Rs 200/-(with CD)

ELECTRONCS PROJECTS (VOL.)

A Compilation of 89 tested Electronic Construction Projects and Circuit Ideas for Professionals and Enthusiasts

> ISBN 978-81-88152-22-3 PUBLISHED BY EFY ISO 9001:2008 CERTIFIED

Electronics Projects Vol. 25

© EFY Enterprises Pvt Ltd First Published in this Edition, January 2010

All rights reserved. No part of this book may be reproduced in any form without the written permission of the publishers.

ISBN 978-81-88152-22-3

Published by Ramesh Chopra for EFY Enterprises Pvt Ltd, D-87/1, Okhla Industrial Area, Phase 1, New Delhi 110020. Typeset at EFY Enterprises Pvt Ltd and Printed at: Shree Gobind Printers Y-56, Okhla Phase 2, New Delhi 110020.

ELECTRONICS PROJECTS VOL. 25

EFY Enterprises Pvt Ltd D-87/1 Okhla Industrial Area, Phase 1

New Delhi 110020

EFY Books & Publications FOR YOU

EFY is a reputed information house, specialising in electronics and information technology magazines. It also publishes directories and books on several topics. Its current publications are:

(A) CONSTRUCTION PROJECTS

- 1. Electronics Projects, Vol. 1: A compilation of selected construction projects and circuit ideas published in Electronics For You magazines between 1979 and 1980.
- 2. Electronics Projects, Vol. 2 to 19: Yearly compilations (1981 to 1998) of interesting and useful construction projects and circuit ideas published in Electronics For You.
- 3. Electronics Projects, Vol. 20 to 24 (with CD): Yearly compilations (1999 to 2003).

(B) OTHER BOOKS

- 1. Learn to Use Microprocessors (with floppy/CD): By K. Padmanabhan and S. Ananthi (fourth enlarged edition). An EFY publication with floppy disk. Extremely useful for the study of 8-bit processors at minimum expense.
- 2. ABC of Amateur Radio and Citizen Band: Authored by Rajesh Verma, VU2RVM, it deals exhaustively with the subject—giving a lot of practical information, besides theory.
- 3. **Batteries:** By D.Venkatasubbiah. This publication describes the ins and outs of almost all types of batteries used in electronic appliances.
- 4. Chip Talk: By Gp Capt (Retd) K. C. Bhasin. The book explains fundamentals of electronics and more than 40 fully tested electronic projects.
- 5. Modern Audio-Visual Systems Including MP4, HD-DVD and Blu-ray: Explains disk working principles, troubleshooting and servicing by Gp Capt (Retd) K. C. Bhasin.

(C) DIRECTORIES

EFY Annual Guide (with CD): Includes Directory of Indian manufacturing and distributing units, Buyers' Guide and Index of Brand Names, plus lots of other useful information.

(D) MAGAZINES

- 1. **Electronics For You (with CD):** In regular publication since 1969, EFY is the natural choice for the entire electronics fraternity, be it the businessmen, industry professionals or hobbyists. From microcontrollers to DVD players, from PCB designing software to UPS systems, all are covered every month in EFY.
- Linux For You (with CD and DVD): Asia's first magazine on Linux. Completely dedicated to the Open Source community. Regular columns by Open Source evangelists. With columns focused for newbies, power users and developers, LFY is religeously read by IT implementers and CXOs every month.
- 3. Facts For You: A monthly magazine on business and economic affairs. It aims to update the top decision makers on key industry trends through its regular assortment of Market Surveys and other important information.
- 4. BenefIT: A technology magazine for businessmen explaining how they can benefit from IT.
- 5. Electronics Bazaar: A monthly B2B magazine for sourcing electronics components, products and machineries. Ideal for buying decision makers and influencers from electronics and non-electronics industry.

For retail orders:

Kits'n'Spares D-88/5, Okhla Industrial Area, Phase-1, New Delhi 110020 Phone: 26371661, 26371662 E-mail: kits@efyindia.com Website: www.kitsnspares.com For magazine subscriptions:

EFY Enterprises Pvt Ltd D-87/1 Okhla Industrial Area, Phase-1 New Delhi 110020 Phone: 26810601-03 Fax: (011) 26817563 E-mail: info@efyindia.com For bulk orders:

Paramount Book Agency Arch No. 30 (West Approach) below Mahalaxmi Bridge, Mumbai 400034 Phone: (022) 40497401, 40497402, 40497474 Fax: 40497434 E-mail: circulations@ibhworld.com

FOREWORD

This volume of Electronics Projects is the twenty forth in the series published by EFY Enterprises Pvt Ltd. It is a compilation of 23 construction projects and 66 circuit ideas published in 'Electronics For You' magazine during 2004.

We are also including a CD with this volume, which not only contains the datasheets of major components used in construction projects but also the software source code and related files pertaining to various projects. This will enable the reader to copy these files directly on to his PC and compile/run the program as necessary, without having to prepare them again using the keyboard. In addition, the CD carries useful software, tutorials and other goodies (refer 'contents' in CD).

In keeping with the past trend, all modifications, corrections and additions sent by the readers and authors have been incorporated in the articles. Queries from readers along with the replies from authors/EFY have also been published towards the end of concerned articles. It is a sincere endeavour on our part to make each project as error-free and comprehensive as possible. However, EFY cannot take any responsibility if readers are unable to make a circuit successfully, for whatever reason.

This collection of tested circuit ideas and construction projects in a handy volume would provide all classes of electronics enthusiasts—be they students, teachers, hobbyists or professionals—with a valuable resource of electronic circuits, which can be fabricated using readily-available and reasonably-priced components. These circuits could either be used independently or in combination with other circuits, described in this and other volumes. We are confident that this volume, like its predecessors, will generate tremendous interest amongst the readers.

CONTENTS

Section A: Construction Projects

1.	Microcontroller based call indicator.	. 3
2.	Automatic water level controller	. 13
3.	Digital water level indicator cum pump controller	. 17
4.	PC based data logger	. 23
5.	Lift overload preventor	. 28
6.	Sound operated on/off switch	. 32
7.	Digital clock using discrete ICs	. 35
8.	A bidirectional visitors counter	. 39
9.	Programmer for 89C51/89C52/89C2051 microcontrollers	. 43
10.	Laser based communication link	. 55
11.	Device switching using password	. 60
12.	Remote controlled sophisticated electronic code lock	. 64
13.	Temperature indicator using AT89C52	. 71
14.	PIC16F84 based coded device switching system	. 78
15.	Load protector with remote switching facility	. 90
16.	Voice recording and playback using APR9600 chip	. 93
17.	Dynamic temperature indicator and controller	. 98
18.	Stepper motor control using 89C51 microcontroller	. 105
19.	Microprocessor based home security system	. 109
20.	Safety guard for the blind	. 115
21.	Digital combinational lock	. 121
22.	Ultrasonic lamp brightness controller	
	Moving message over dot matrix display	

Section B: Circuit Ideas:

1.	Intruder alarm	
2.	LED based message display	
3.	DC-To-DC converter	
4.	Versatile proximity dectetor with auto reset	
5.	Window charger	
6.	Multiband CW transmitter	

7.	Programmable timer for appliances	139
8.	Antibag snatching alarm	141
9.	Off timer with alarm	142
10.	Over voltage protector	143
11.	Fuse cum power failure indicator	143
12.	LED based reading lamp	144
13.	Mobile cellphone charger	145
14.	Smart foot switch	146
15.	Doorbell controlled porchlight	147
16.	AC mains voltage indicator	148
17.	Sound operated light	148
18.	Low cost electronic quiz table	150
19.	Zener diode tester	151
20.	Highway alert signal lamp	151
21.	Variable power supply with digital control	152
22.	Simple security system	153
23.	Low resistance continuity tester	155
24.	Child's lamp	155
25.	Clap operated electronic switch	156
26.	Light controlled digital fan regulator	157
27.	Sensitive optical burglar alarm	158
28.	Watchman watcher	158
29.	Cell phone controlled audio/video mute switch	160
30.	Panel frequency meter	161
31.	Random flashing X-mas stars	162
32.	PC based DC motor speed controller	163
33.	Frequency divider using 7490 decade counter	164
34.	Dome lamp dimmer	166
35.	Offset tuning indicator for CW	166
36.	8-digit code lock for appliance switching	167
37.	Stabilised power supply with short circuit indication	168
38.	Light operated internal door latch	169
39.	Mains box heat monitor	170
40.	Digital stop watch	171
41.	Flashing cum running light	172
42.	Faulty car indicator alarm	172
43.	Quality FM transmitter	173

44.	Simple key opertated gate locking system	174
45.	DC motor control using a single switch	175
46.	Handy tester	176
47.	Programmable electronic dice	177
48.	PC based candle ignitor	177
49.	Solidstate remote control switch	178
50.	Microcontroller based monitoring system	179
51.	Automatic school bell	181
52.	Automatic water pump controller	183
53.	Noise meter	184
54.	Anti theft alarm for bikes	185
55.	Timer with musical alarm	186
56.	Mains failure/resumption alarm	187
57.	Soldering iron temperature controller	187
58.	Multipurpose white led light	188
59.	Electronic watchdog	189
60.	Fire alarm using thermistor	190
61.	Twilight lamp blinker	191
62.	Electronic street light switch	
63.	Water level controller	192
64.	Sound-operated intruder alarm	193
65.	Hit switch	194
66.	Chanting player	195

SECTION A : CONSTRUCTION PROJECTS

MICROCONTROLLER-BASED CALL INDICATOR

UDAY B. MUJUMDAR

In large establishments, such as ho tels and hospitals, intercoms and call bell systems are essential for communication between inmates and the assisting staff. Intercom being a costlier option, in many the relatively inexpensive call indication systems are preferred. The call indication system gives an audio-visual indication of the call point (room or cabin number).

In conventional call indication systems, different call points are connected to the indication system via separate cables. This makes the installation complicated and costly, especially when the number of calling points is quite large.

Here's a simple and economical system for call point identification and display. The system has the following features:

1. Uses only two wires for connecting different call points.

2. Up to 36 call points (in two circuits

comprising 18 call points each) can be connected.

3. The control panel has a bright display for visual indication of call point with floor number and a buzzer for audible indication. The buzzer can be snoozed using the Call Acknowledge key.

4. The call point number can be changed without changing the wiring.

5. The system can be expanded to accomodate more call points in the future.

System overview

Fig. 1 shows block diagram of the call indication system. The system comprises different call points connected to a control panel through a two-core shielded cable. The call points are arranged in two circuits. The maximum number of call points connected per circuit is 18. Thus a total of 36 call points can be connected. The two-circuit system is useful when the call points are on different floors.

Fig. 2 shows connection of different call points arranged in two circuits. Table I shows connection details for different numbers of call points on the same and different floors.

The hardware

Fig. 3 shows the microcontroller-based call indication system built around Motorola's MC68HC705J1A microcon-troller. The system comprises four main sections, namely, call-point detection section, analogue-to-digital conversion (ADC) section, display section and microcont-roller section.

The call-point detection section detects the key pressed from a call point. A fixed DC voltage (decided by a resistor in series with the key) is transmitted to the

> ADC section through the cable. The ADC section converts the analogue signal into equivalent digital data. The microcontroller decodes the data and displays the call point number accordingly.

> The call-point detection section. The two-core shielded cable connects the call points internally as well as to the control unit. A shielded cable is used because it reduces the noise. Rext-1 through Rext-18 are the resistors in series with keys 1 through 18 (refer Fig. 2). The values of resistors are the same for both call-point circuit-1 and call-point circuit-2.

> > Call-point circuits 1

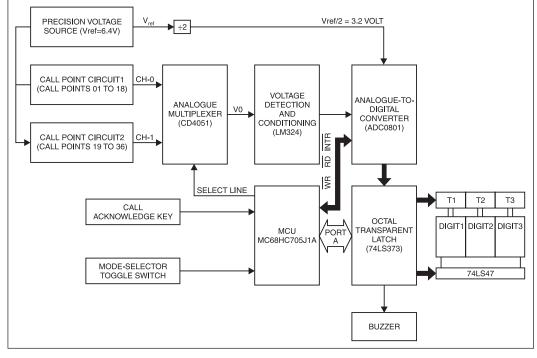
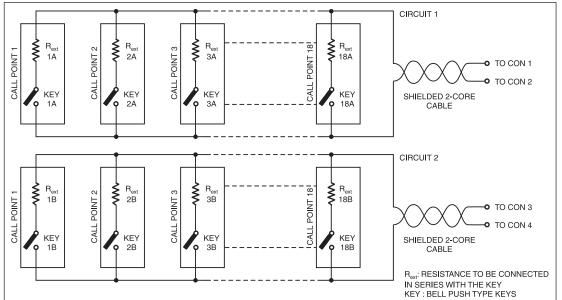


Fig. 1: Block diagram of the microcontroller-based call indicator system

and 2 are powered by a fixed, temperature-compensated 6.4V reference source. R24 and R25(1.2k) limit the current drawn from the source. R22 and R23 are fixed resistors connected on the circuit board. Capacitors C11 and $C12(0.1 \mu F)$ bypass the noise signals. Voltage V0 is the voltage drop across internal resistors R22 and R23 when any key is pressed. The typical value of the external resis-


call point number and voltage drop (V0) across R22 or R23 for each key are shown in Table II. The voltage V0 is decided by the key pressed (precisely by the resistor in series with that key). This voltage is transmitted via the two-core cable to the main circuit.

CMOS analogue multiplexer CD4051 (IC6) is a single 8-channel multiplexer having binary control inputs A, B and C. The three binary signals select one of the eight channels and connect it to the output. Fig. 3 shows the connection details of IC CD4051. Here only two channels of IC CD4051 have been used.

The outputs of the two circuits are continuously scanned using the multiplexer. The output of call-point circuit 1 is connected to channel-0 (CH-0) and the output of call-point circuit 2 is connected to channel-1(CH-1).

The fixed temperature-compensated voltage source Vref is derived from National Semiconductor's active temperature-compensated reference zener diode LM329 (IC5). It is very essential to have a temperature-compensated voltage source as a little change in V_{ref} changes the voltage drop (V0) across resistor R22 or R23, leading to wrong identification of the call point number. IC LM329 gives a fixed output voltage of 6.9 volts. It has a very low dynamic impedance of 0.8 ohm. The low impedance minimises the errors due to input voltage variations, load variations and feed resistor drift.

When all the keys are open (no key is pressed), voltage V_0 is zero. When any key is pressed, V_0 is given by:

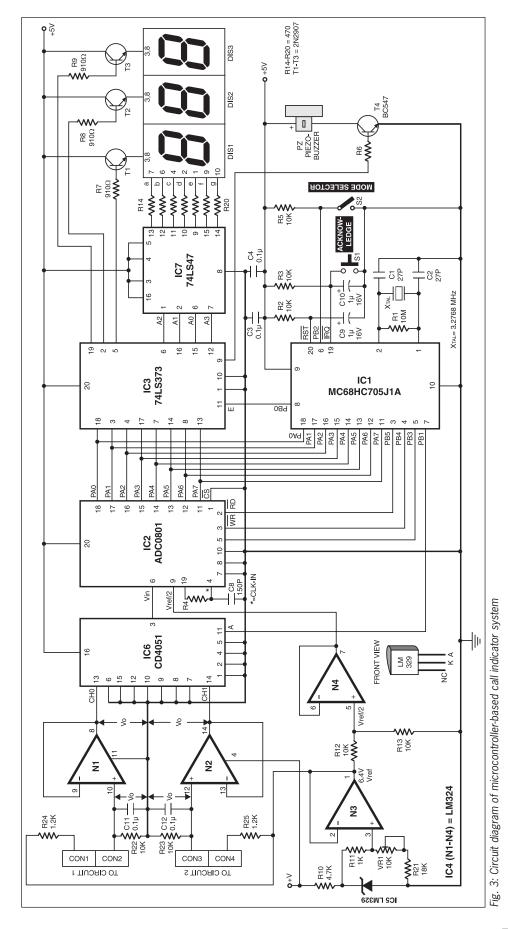
tor, corresponding Fig. 2: Wiring of 36 call points arranged in two circuits

where R24 is 1.2 kilo-ohms and R22 is 10 kilo-ohms.

$$V_0 = V_{ref} \times \frac{R22}{(R24 + R_{ext} + R22)}$$
 volts

IC LM324 comprising N1 through N4 (IC4) is used as a voltage follower to buffer the respective voltage signals.

The ADC section. The potential drop across resistor R22 on pressing a key varies from 0 volt to 5.25 volts (refer Table II). This analogue voltage is converted into digital equivalent by IC ADC0801 (IC2).


IC ADC0801 is an 8-bit, successive approximation-type, CMOS analogueto-digital converter housed in a 20-pin dip package. The input voltage for the converter can range from 0 to 5 volts and it operates off a single power supply of 5 volts. It has two inputs, namely, $V_{in}(+)$ pin and $V_{\rm in}(-)$ pin, for the differential analogue signal. When the analogue signal is single-ended positive, i.e. it varies from 0 volt to 5 volts, $V_{\rm in}(+)$ pin is used as the input and $V_{\rm in}$ (–) pin is grounded.

The converter requires a clock at pin 4 (CLK-IN); the frequency can range from 100 kHz to 800 kHz. The user has two options: one is to connect an external clock at CLK-IN and the other is to use the built-in internal clock by connecting a resistor and a capacitor externally at pins 19 and 4, respectively. Here we've used the second option for giving clock pulses to the ADC. The frequency (f) is calculated from the following relationship:

f= 1/1.1 RC Hz

The three control signals of ADC0801 (\overline{CS} , \overline{WR} and \overline{RD}) are used for interfacing. It is enabled when chip-select \overline{CS} goes low. When write line \overline{WR} goes low, the

		TABLE I	
Distribution of Call Point	Suggested Mode	Call Point Connection Details	Numbering of Call Point
1. 18 or more call points on the same floor	0	 Connect call point circuit-1 output to CON1 and CON2 Connect call point circuit-2 output to CON3 and CON4 	001 to 036
2. 18 or less call points only 1 st floor	1	 Connect call point circuit-1 output to CON1 and CON2 CON3 and CON4 unused 	001 to 018
3. 18 or less call points on two floors	1	 Connect call point circuit-1 output to CON1 and CON2 one floor. Connect call point circuit-1 output to CON1 and CON2 second floor. 	001 to 018 101 to 118

internal successive approximation register (SAR) is reset, and the output lines go to high-impedance state. When WR transits from low to high state, the conversion begins. When the conversion is completed, the interrupt request line INTR is asserted low and the data is placed on the output lines. The INTR signal can be used to know the completion of conversion. When the data is read by asserting read line $\overline{\text{RD}}$ low, the INTR is reset.

When Vcc is 5 volts, the input voltage (V_{in}(+)) can range from 0 to 5 volts and the corresponding output is 00H to FFH. However, the full-scale output can be restricted to a lower range of inputs by using pin V_{ref}/2. The voltage at pin V_{ref}/2 decides the conversion step size.

An optimal step size of ADC is 25 mV (6.4/256 = 25 mV). Thus an analogue voltage signal of 6.4 volts at pin $V_{in}(+)$ gets converted into FFH (11111111b) at the output data pins. The ADC clock frequency is about 600 kHz. This gives a conversion period of approximately 100 microseconds.

The ADC continuously converts the analogue input into digital data. This minimises the chances of malfunctioning when keys from two or more call points are simultaneously pressed.

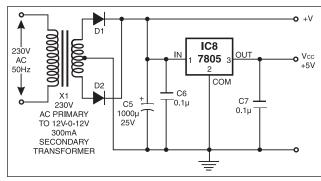
Table II gives the analogue voltage V0 and its digital equivalent for different call points. When no key is pressed, V0 is nearly zero and its digital equivalent produced by the ADC is 00D. When a key is pressed, the digital equivalent varies from 10D to 200 D (refer Table II). This digital data is further processed by the microcontroller into the equivalent call-point number.

The latch and display section. The display device is an interface between the user and the machine. The call-point location information is displayed on three 7-segment displays (DIS1 through DIS2) driven using the time-multiplexed technique. DIS1 displays the floor number, while DIS2 and DIS3 display the call point number.

PARTS LIST

Semiconductor	'S:
IC1	- MC68HC705J1A micro-
	controller
IC2	- ADC0801 8-bit analogue-
	to-digital converter
IC3	- 74LS373 octal transparent
	latch
IC4	- LM324 quad operational
	amplifier
IC5	- LM329 temperature-
	compensated ref. diode
IC6	- CD4051 analogue
	multiplexer
IC7	- 74LS47 BCD-to-7-segment
	decoder/driver
IC8	- 7805 +5V regulator
T1-T3	- 2N2907 npn transistor
T4	- BC547 npn transistor
D1, D2	- IN4007 rectifier diode
DIS1-DIS3	- LTS542 7-segment com-
	man an ada dianlar

mon-anode display Resistors (all ¼-watt, ±5% carbon,


unless stated otherwise):

unless stated of	herwise):
R _{ext-1} -R _{ext-18} (valu	ies are stated in Table II)
R1	- 10-mega-ohm
R2-R6,	
R12, R13	- 10-kilo-ohm
R7-R9	- 910-ohm
R14-R20	- 47-ohm
R10	- 4.7-kilo-ohm
R11	- 1-kilo-ohm
R21	- 18-kilo-ohm
R22, R23	- 10-kilo-ohm
R24, R25	- 1.2-kilo-ohm
Capacitors:	
C1-C4, C6, C7	- 27pF ceramic disk
C11, C12	- 0.1µF ceramic disk
C5	- 1000µF, 25V electrolytic
C8	- 150pF ceramic disk
C9, C10	- 1µF, 16V electrolytic
Miscellaneous:	
X1	- 230V primary to 12V-0-12V,
	300mA secondary trans-
	former
XTAL	- 3.2768MHz crystal
PZ	- Piezobuzzer
S1, S2	- Push-to-on switch

All the three 7-segment displays share common input lines. Data entered for the first digit enables only the first 7segment display. After a few milliseconds, the data for the first digit is replaced by that of the next digit, but this time only the second display is enabled. After all the digits are displayed in this way, the cycle repeats. Because of this repetition at 100 times a second, there is an illusion that all the digits are being continuously displayed. BCD-to-7-segment decoder/ driver 74LS47 (IC7) and 2N2907 (T1 through T3) are used for driving the common-anode displays.

Port A of the microcontroller (IC1) is used for reading the ADC output as well as the data display. Octal transpar-

ent latch 74LS373 (IC3) is used to avoid the bus contention. While refreshing the displays, the latch is made transparent and the data is displayed digitwise. During this period, the data lines of ADC0801 are in high-impedance state as RD and WR are high. Once

ance state as \overline{RD} and $\ \mbox{Fig. 4: Circuit diagram of power supply}$

all the digits are refreshed, the latch is made non-transparent. Now if there is any change in the data line of the ADC, it will not be reflected on the data displayed.

Let's assume that the data to be displayed is 126. BCD equivalent of 1 (0001) is placed on the input lines of IC 74LS47 (IC7). IC 74LS47 gives the 7-segment equivalent data of 01. Now digit '1' is selected using transistor T1 and displayed on DIS1 for about 2 milliseconds. In a similar way, digits '2' and '3' are displayed on DIS2 and DIS3 for 2 ms each with the help of transistors T2 and T3,

10 ms. The timer interrupt generates the interrupt every 10 ms. The displays are refreshed during the timer interrupt service routine.

The microcontroller section. Motorola's MC68HC705J1A microcontroller (IC1) is programmed to perform the following functions:

• Scan the keys to detect pressing of any key

• Read the data from ADC0801

• Identify the destination where key is pressed

• Display the call point number and also give audio indication

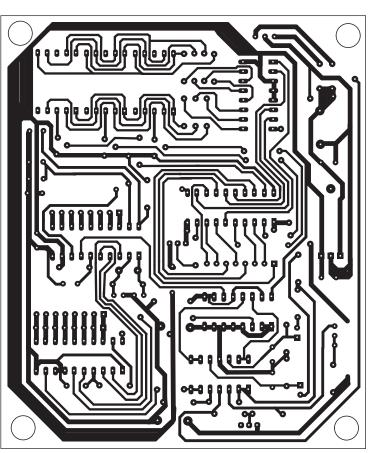


Fig. 5: Actual-size, single-side PCB layout for microcontroller-based call indicator

• Check for the pressing of Acknowledge key to snooze the buzzer

Fig. 3 shows how the different sections are connected to the microcontroller. Port A is used for reading the data from the ADC as well as the display. When the controller reads the ADC, port A is in input mode; while during data display, the same port is configured in output

respectively. The digit is refreshed every

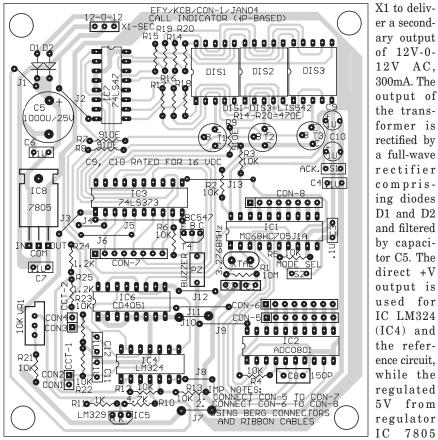


Fig. 6: Component layout for the PCB

mode. Port B is used for controlling the ADC and the latch.

Power supply. The power supply circuit is shown in Fig. 4. The AC mains supply is stepped down by transformer tire circuit excluding IC4 and the reference circuit.

7805

(IC8) pow-

ers the en-

An actual-size, single-side PCB of Figs 3 and 4 is shown in Fig. 5, with its component layout in Fig. 6.

		TABLE II		
$\mathbf{R}_{\mathrm{ext}}$	$Vo=\frac{64\times10k}{(11.2k+R_{ext})}$	ADC Equi D= $\frac{Vo}{25 \times 10^{-3}}$	Range of identification	Call point number
220k (R _{ext-1})	64/231.2=0.2768	11	07-15	01
100k (R _{ext-2})	64/111.2=0.5755	23	16-26	02
68k (R _{ext-3})	64/79.2=0.808	33	27-38	03
$47k(R_{ext-4})$	64/58.2=1.0996	44	39-50	04
33k (R _{ext-5})	64/44.2=1.4479	58	51-62	05
27k (R _{ext-6})	64/38.2=1.6753	67	63-72	06
22k (R _{ext-7})	64/33.2=1.9277	77	73-82	07
18k (R _{ext-8})	64/29.2=2.1917	88	83-92	08
15k (R _{ext-9})	64/26.2=2.4427	98	93-103	09
12k (R _{ext-10})	64/23.2=2.7586	110	104-114	10
10k (R _{ext-11})	64/21.2=3.0188	120	115-125	11
8.2k (R _{ext-12})	64/19.4=3.2989	132	126-137	12
6.8k (R _{ext-13})	64/18=3.5555	142	138-147	13
5.6k (R _{ext-14})	64/16.8=3.8009	152	148-156	14
4.7k (R _{ext-15})	64/15.9=4.0251	161	157-170	15
3k (R _{ext-16})	64/14.2=4.5070	180	171-188	16
2k (R _{ext-17})	64/13.2=4.8484	194	189-200	17
1k (R _{ext-18})	64/12.2=5.2459	210	200 and above	18

The software

Motorola offers integrated development environment (IDE) software for programming the microcontroller and complete development of the system. The development tool comes with editor, assembler and programmer software to support Motorola's device programmer and a software simulator. The ICS05JW in-circuit simulator, along with the development board (pod), forms a complete simulator and non-real-time input/output emulator for simulating, programming and debugging the code of an MC68HC705J family device.

When you connect the pod to your host computer and target hardware, you can use the actual inputs and outputs of the target system during simulation of the code. You can also use the ISC05JW software to edit and assemble the code in standalone mode, without input/output to/ from the pod. The pod (MC68HC705J1CS) can be interfaced to any IBM computer running on Windows 3.x/Windows 9X using the serial port.

The software routines for the call bell indicator, along with their Assembly language code, are given in Appendix 'A'. The following functions are performed by the software program:

1. Initialise ports A and B, timer and display

2. Monitor pressing of keys using the ADC

3. Display the data

4. Identify the call point number

For perfect functioning of any system, the associated software requires many data manipulation tricks and internal branching. Here the software is divided into Initialise, Identify, DispCon, Refresh, Read and Acknowledge modules. The sequence of operation and logic can be understood from the program listing. A brief description of each module is given below.

Init. Initially ports A and B are assigned as the output ports. The latch is made transparent and the display shows 000, indicating no key is pressed. The timer interrupt is initialised to give an interrupt every 10 ms.

Identify. In this part of the program, the ADC data is analysed and the call point destination is identified. If any key is found pressed, the particular call point number is stored in hex form in the display register.

DispCon. This part of the software is

7

used for finding out the decimal equivalent of hex data. The microcontroller manipulates the data, which is essentially in hex, but for display purpose, data should be in BCD.

Refresh. The timer of the micro-controller is initialised to give an interrupt every 10 ms. For multiplexed display, it is mandatory to refresh the displays every 10 ms. During the timer interrupt service routine, the microcontroller refreshes the displays and reads the ADC data.

Acknowledge. The call can be acknowledged by using the Acknowledge key. When a call is acknowledged, the display shows 000 and the buzzer $\left(PZ\right)$ snoozes.

Installation of the call indicator

Depending on the number of call points, connect the call points in a single circuit or arrange them in two circuits. The display indication will vary accordingly.

Normally, the call points are in different rooms. Rext is the resistor that decides the call point number. It is connected in series with the keys. For making the call, Bell-type push switches are used. Resistor Rext is placed inside the switch. The change in call point number can be implemented just by changing Rext.

EFY note. The software program Callnew.asm, along with the Callnew.S19 file and relevant datasheet, are included in the CD.

An actual-size, single-side PCB of Figs 3 and 4 is shown in Fig. 5, with its component layout in Fig. 6

	CALL	NEW.ASM	
callnew.asm	Assembled with CASMW 10/17/03 10:33:13 AM PAGE 1 $$	0800	64 pb1 equ 1
	1 * Call Indicator Using Motorola Micro-controller	0800	65 pb0 equ 0 66
	MC68HC705J1A.	0800	67 pb5. equ \$20
	2 * Developed By : Uday B.Mujumdar,Lecturer,	0800	68 pb4. equ \$10
	Shri Ramdeobaba Kamla Nehru Engineering	0800	69 pb3. equ \$08
	3 * College,Nagpur. 4 ************************************	0800	70 pb2. equ \$04
00C0		0800	71 pb1. equ \$02
00C0 00C0	5 org \$00c0 6 digit_1 rmb 1 ;	0800	72 pb0. equ \$01 73
00C1	$7 \text{ digit}_2 2 \text{ rmb } 1;$		74
00C2	8 digit 3 rmb 1;	0800	75 ddra equ \$04
00C3	9 position_1 rmb 1 ;	0800	76 ddra7 equ 7
00C4	10 position_2 rmb 1 ;	0800	77 ddra6 equ 6
00C5	11 position_3 rmb 1 ;	0800	78 ddra5 equ 5
00C6 00C7	12 adc_data1 rmb 1 ; 13 adc data2 rmb 1 ;	0800 0800	79 ddra4 equ 4 80 ddra3 equ 3
00C8	14 address rmb 1;	0800	81 ddra2 equ 2
00C9	15 disp_Address rmb 1 ;	0800	82 ddra1 equ 1
00CA	16 count1 rmb 1 ;	0800	83 ddra0 equ 0
00CB	17 count2 rmb 1;	0800	84 ddra7. equ \$80
00CC	18 number1 rmb 1 ;	0800	85 ddra6. equ \$40
00CD 00CE	19 number2 rmb 1 ; 20 data_Out1 rmb 1 ;	0800 0800	86 ddra5. equ \$20 87 ddra4. equ \$10
OOCE	21 data_Out2 rmb 1 ;	0800	88 ddra3. equ \$08
00D0	22 buzzer rmb 1 ;	0800	89 ddra2. equ \$04
00D1	23 debounce rmb 1 ;	0800	90 ddra1. equ \$02
	24 * Pending call storing :From D3 to F6.	0800	91 ddra0. equ \$01
	25		92 93
00D2	26 *memory area equates 27 ramstart equ \$00c0	0800	95 94 ddrb equ \$05
00D2	28 romstart equ \$0300	0800	95 ddrb5 equ 5
00D2	29 vectors equ \$07f8	0800	96 ddrb4 equ 4
	30	0800	97 ddrb3 equ 3
	31 *interrupt & reset vector area	0800	98 ddrb2 equ 2
07F8	32 33 org \$07f8	0800 0800	99 ddrb1 equ 1 100 ddrb0 equ 0
07F8 049		0800	100 ddrb5. equ \$20
07FA 051		0800	102 ddrb4. equ \$10
07FC 030		0800	103 ddrb3. equ \$08
07FE 030		0800	104 ddrb2. equ \$04
	38 39	0800 0800	105 ddrb1. equ \$02 106 ddrb0. equ \$01
0800	40 porta equ \$00	0000	100 ddfb0. equ 301
0800	41 pa7 equ 7		108
0800	42 pa6 equ 6	0800	109 tscr equ \$08
0800	43 pa5 equ 5	0800	110 tof equ 7
0800 0800	44 pa4 equ 4 45 pa3 equ 3	0800 0800	111 rtif equ 6 112 toie equ 5
0800	45 pa3 equ 5 46 pa2 equ 2	0800	112 tole equ 5 113 rtie equ 4
0800	47 pa1 equ 1	0800	114 tofr equ 3
0800	48 pa0 equ 0	0800	115 rtifr equ 2
0800	49 pa7. equ \$80	0800	116 rt1 equ 1
0800	50 pa6. equ \$40	0800	117 rt0 equ 0
0800 0800	51 pa5. equ \$20 52 pa4. equ \$10		118 119
0800	52 pa4. equ \$10 53 pa3. equ \$08	0800	119 120 tof. equ \$80
0800	54 pa2. equ \$04	0800	120 tol. equ \$60
0800	55 pa1. equ \$02	0800	122 toie. equ \$20
0800	56 pa0. equ \$01	0800	123 rtie. equ \$10
0800	57 58 perth and \$01	0800	124 tofr. equ \$08
0800	58 portb equ \$01 59	0800 0800	125 rtifr. equ \$04 126 rt1. equ \$02
0800	60 pb5 equ 5	0800	120 ftt. equ 302 127 rt0. equ \$01
0800	61 pb4 equ 4		128
0800	62 pb3 equ 3	0800	129 tcr equ \$09
0800	63 pb2 equ 2		130

0800 0800 0800 0800 0800 0800 0800 080	131 eprog equ \$18 132 elat equ 2 133 mpgm equ 1 134 epgm equ 0 135 elat. equ \$04 136 mpgm. equ \$02 137 epgm. equ \$01		divided in two parts.In first part 207 * the circuit1(adc_data1) output is analysed while in second part the 208 * the circuit2(adc_data2) output is analysed. 209 * The call point numbers will be stored in ram starting from address 210 * D3 Hex. 211 * ADC data is compared with already
0800 0800 0800	138 139 copr equ \$07f0 140 copc equ 0 141 copc. equ \$01 142		 211 * ADC data is compared with already stored calculated values and 212 * accordingly the calling Point destinatio n will be confirmed. 213 * The Calling Point destination will be
0800 0800 0800	143 mor equ \$07f1 144 cop equ 0 145 copen. equ \$01 146	032C [03] B6C8	confirmed if the data persists 214 * 100 miliseconds. 215 216 Ident00 Ida Address ; If Address=F6 indicates
07F1 07F1 01	147 ************************************	032E [02] A1F6 0330 [03] 230F	that all the 217 cmp #\$F6 ; 36 memory locations are full 218 bls Ident03 ;
0300	151 org \$0300 152 * Crystal Frequency is 3.2768MHz.This gives the	0332 [03] B6C9	219 220 Ident01 Ida Disp_Address ; Wait till all the calling points 221 cmp #\$F6 ; are displayed.
	Internal Clock Frequency of 153 * Crystal Frequency/2 = 1.6384MHz. 154 * The Timer interrupt can be programmed to give interrupt after every 16,384, 155 * cycles by selecting rt1 and rt2 in timer status	0334 [02] A1F6 0336 [03] 2203 0338 [03] CC03E5	221 cmp #\$F6 ; are displayed. 222 bhi Ident02 223 jmp Mode00 224 ************************************
	and control register. 156 * Here the Timer is programmed to provide an interrupt after every 10 miliseconds. 157 * i.e. 16384 cycles. For this option $rt0 = rt1 = 0$. 158 *		 F7,it indicates that no call 226 * is pending and the addresss pointers are re-initia lised at starting address 227 * i.e. D3 hex. 228 ***********************************
0300 [02] 9A 0301 [05] 1808 0303 [05] 1308 0305 [05] 1108	159 start cli ; clear interrupt 160 bset rtie,tscr ; Activate the Timer Interrupt. 161 bclr rt1,tscr 162 bclr rt0,tscr	033B [02] A6D3 033D [04] B7C8 033F [04] B7C9	229 Ident02 Ida #\$D3 230 sta Address 231 sta Disp_Address 232 ************************************
	164 * Initilization :-In initialization; the port pins are assigned as input or output	0341 [03] B6C6	233 * Ident03 : Scan circuit1 output. 234 ************************************
	165 * as per the circuit connections. 166 * Port A pins are used for Display of data as well as for reading the ADC 167 * Data.	0343 [02] A107 0345 [03] 2206	output. 236 cmp #!07 237 bhi Ident05 238
	168 * Port B pins are used for controlling the ADC and Multiplexer. The Port B 169 * pins are connected as:	0347 [05] 3FCA 0349 [05] 3FCC 034B [03] 2043	239 Ident04 clr Count1 ; No call is there. 240 clr Number1 241 bra Ident20 ; Check other circuit 242 ************************************
	Pb3 : Interrupt from ADC; Pb3 : Interrupt from ADC; Pb2: For Channel Selection of 4051; Pb1 :Mode Selection; Pb0 : Latch Enable. 173 * Keep the display and Buzzer off initially.		 243 * Ident05 : Adc data is greater than 07,Check for the calling point number. 244 * The range of data for each calling point is stored at memory locations from 245 * 0700hex to 0712hex.
0307 [02] A6BF 0309 [04] B700 030B [02] A6FF 030D [04] B704	174 ************************************	034D [03] 5F 034E [03] 5C	246 ************************************
030F [02] A635	Port, Display Off,Buzzer off 179 180 InitB lda #%110101 ; Pb5,Pb4,Pb2 and Pb0 in O/P Mode.	034F [05] D60700 0352 [03] B1C6 0354 [03] 2205	251 252 Ident07 Ida \$0700,x; Check if the ciccuit1 output lies 253 cmp adc_data1 ; in the range? 254 bhi Ident10 ; Range is found
Mode. 0311 [04] B701 0313 [02] A635	181 ; Pb3 and Pb1 in I/P 182 sta portb 183 Ida #%110101	0356 [02] A311 0358 [03] 25F4 035A [03] 5C	255 256 Ident08 cpx #!17 ; Is all the ranges are checked? 257 blo Ident06 258 Ident09 incx ; increment the memory pointer 259 ************************************
Enable High, 0315 [04] B705 0317 [05] 1101	 184 sta ddrb ; Latch Transparant 185 bclr Pb0,portb ; Latch Latched 186 ************************************		 260 * Ident10 : The range in which the adc_data lies is found. Confirm the perticular 261 * key press if the data persists for 100 miliseconds 262 * reg Count1 stores the number of scanning times for which the same data persists. 263 * reg number1 temporaly stores the calling point number of circuit1. The number
0319 [03] 4F 031A [05] C707F0 031D [02] AEC0 031F [04] F7 0320 [03] 5C 0321 [02] A3FF	189 ************************************	035B [03] B6CA 035D [02] A100 035F [03] 2606	 264 * will be confirmed if the data persists for 100 milisecond(10 scannings) 265 ************************************
0323 [03] 25FA 0325 [04] F7	cleared? 196 blo clear3 197 sta _x 198 ************************************	0361 [04] BFCC 0363 [05] 3CCA 0365 [03] 2029	 270 Ident11 stx Number1 ; store the calling point number temporaly. 271 inc Count1 272 bra Ident20 273 ************************************
0326 [02] A6D3 0328 [04] B7C8 032A [04] B7C9	200 ***********************************	0367 [05] 3CCA	Miliseconds or not. 275 * Also check whether it is the same key press? 276 ************************************
	204 ************************************	0369 [03] B3CC	278 279 Ident13 cpx Number1 ; Check is it a same key press?
	206 * from the adc data. The module is	036B [03] 2706	280 beq Ident15 ; Yes,

	001	
036D [05] 3FCC	281 282 Ident14 clr Number1 ; Key Press is	03BB [02] 9F
036F [05] 3FCA 0371 [03] 201D	different; start again. 283 clr Count1 284 bra Ident20 ; Check the other circuit 285	03BC [02] AA80 03BE [03] B1CD 03C0 [03] 2706
0373 [03] B6CA 0375 [02] A10A 0377 [03] 2317	286 Ident15 Ida Count1 287 cmp #10 288 bls Ident20 ;10 scannings	03C2 [05] 3FCD 03C4 [05] 3FCB 03C6 [03] 201D
0011 [00] 2011	are not over,check other circut. 289 ************************************	
	290 *Ident16 : If the Call point number is already stored. Do not accept it again	03C8 [03] B6CB 03CA [02] A10A 03CC [03] 2317
0379 [02] AED3	291 ************************************	
037B [03] F6	293 294 Ident17 lda ,x ; Check the data stored memory pointed by	03CE [02] AED3
037C [03] B1CC 037E [03] 270C	295 cmp Number1 ; the memory pointer. 296 beq Ident19 ; The call point is already stored 297	03D0 [03] F6 03D1 [03] B1CD 03D3 [03] 270C
0380 [03] 5C 0381 [02] A3F6 0383 [03] 23F6	298 Ident18 incx ; Increment the Memoty pointer 299 cpx #\$F6 ; Is it a last memory location? 300 bls Ident17 301 *****	03D5 [03] 5C 03D6 [02] A3F6
	301 ************************************	03D8 [03] 23F6 03DA [03] B6CD
0385 [03] B6CC	303 ***********************************	03DC [03] BEC8
0387 [03] BEC8 0389 [04] F7	305 ldx Address 306 sta .x	03DE [04] F7 03DF [05] 3CC8
038A [05] 3CC8	307 inc Address 308 ************************************	
	309 * Ident19 : Get ready to read new data. 310 ************************************	
038C [05] 3FCC 038E [05] 3FCA	311 Ident19 clr Number1 312 clr Count1	03E1 [05] 3FCD 03E3 [05] 3FCB
030E [03] 3F CA	313 ***********************************	0313 [03] 31 01
	315 ************************************	
	316 * Ident20 : Scanning of Circuit2 317 * : The output of circuit2 is stored in adc_data2.	
0390 [03] B6C7	318 statement of the st	
0392 [02] A107 0394 [03] 2206	320 cmp #!07 321 bhi Ident22	
0396 [05] 3FCB	322 323 Ident21 clr Count2	
0398 [05] 3FCD 039A [03] 2049	324 clr Number2 325 bra Mode00 ; Check other circuit	03E5 [05] 02012B
	326 ************************************	
	the calling point number.	
039C [03] 5F	329 Ident22 clrx ; Clear the Register X 330	
039D [03] 5C	331 Ident23 incx 332	03E8 [03] BEC9 03EA [03] F6
039E [05] D60700 03A1 [03] B1C7	333 Ident24 Ida \$0700,x 334 cmp adc_data2	03EB [02] A100 03ED [03] 271C
03A3 [03] 2205	335 bhi Ident26 336	
03A5 [02] A311 03A7 [03] 25F4	337 Ident25 cpx #!17 338 blo Ident23	
03A9 [03] 5C	339 incx 340 ************************************	03EF [03] BEC9 03F1 [03] F6
	341 * Ident26 : The range in which the adc_data lies is found. Confirm the perticular	03F2 [04] B7CE
	 342 * key press if the data persists for 100 miliseconds. 343 * reg Count1 stores the number of scanning times for which the same data 	03F4 [05] 0ECE06
	344 * persists. 345 * reg number1 temporaly stores the calling point	03F7 [05] 3FCF 03F9 [05] 1CD0
	number of circuit1. 346 * The number will be confirmed if the same data persists for 100 milisecond	03FB [03] 203B
	347 * (10 scannings) 348 ************************************	
03AA [03] B6CB 03AC [02] A100	349 Ident26 Ida Count2 ; Is it a first key press? 350 cmp #!00	03FD [05] 1FCE 03FF [03] B6CE
03AE [03] 2609	351 bne Ident28 352	0401 [02] AB12
03B0 [02] 9F 03B1 [02] AA80	353 Ident27 txa ; Set msb high to indicate circuit2 data 354 ora #%10000000	0403 [04] B7CE 0405 [05] 3FCF
03B3 [04] B7CD 03B5 [05] 3CCB	355 sta Number2 356 inc Count2	0407 [05] 1CD0 0409 [03] 202D
03B7 [03] 202C	357 bra Mode00 358 ********	[]
	359 * Ident28 : Check if the Keypress persists for 100 Miliseconds or not.	
	360 * Also check whether it is a same key press? 361 ************************************	040B [05] 3FCE
03B9 [05] 3CCB	362 Ident28 inc Count2	040D [05] 3FCF

$363 \\ 364$	
364	T-1
365	Ident29 txa ora #%10000000
366	cmp Number2
367	beq Ident31
368	
369 370	Ident30 clr Number2 ; Not valid key press clr Count2
371	bra Mode00 ;
372	
	Ident31 lda Count2
374 375	cmp #!10 bls Mode00 ; 10 scannings are not finished.
376	**************************************
377	* Ident32 : If the Call point number is already
	stored, Do not accept it again
010	Ident32 ldx #\$D3
380	
	Ident33 lda ,x
382 383	cmp Number2 beq Ident36
384	beq mentoo
385	Ident34 incx
386	cpx #\$F6
387 388	bls Ident33
	Ident35 lda Number2 ; Number2 stores the
	call no.data
390	ldx Address
391 392	sta ,x inc Address
393	***********
394	* Ident36 : The number is already stored in
395	memory,Do not repeat it.
	Ident36 clr Number2
397	clr Count2

	* Mode : This part of the programme reads the tus of the Mode key.Accordingly
	* the format of the display will be decided.
	* For Mode 0: The Call Points will be displayed as
402	001 to 018 for circuit1 * and 019 to 036 for circuit2.
402	* For Mode 1: The call points will be displayed as
	001 to 018 for circuit1 and
	* and 101 to 118 for circuit2.
405	* Mode selector switch is connected to pin Pb1 of PortB.
	Mode00 brset Pb1,Portb,Mode07 ; check
	is it a mode 1or 2.
	* Mode1 : Call points will be decided from 001 to 036
410	* Display the calling point number pointed
	by register Disp_Address.
411	Mode01 ldx Disp Address
412	Mode01 ldx Disp_Address lda ,x
414	cmp #!00 ; Is it 00?
415	beq Mode06
416 417	* Mode02 : Data conditioning of circuit2 display.(Display
	001 to 018)
418	*********
	Mode02 ldx Disp_Address
	ldo v
420 421	lda ,x sta Data Out1
$421 \\ 422$	sta Data_Out1
$421 \\ 422$	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb
421 422 423	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether
421 422 423 424	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb
421 422 423 424 424 425 426	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on
421 422 423 424 424 425 426 427	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00
421 422 423 424 425 426 427 428	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00
421 422 423 424 425 426 427 428	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 ***********************************
421 422 423 424 425 426 427 428 429 430	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 *** Mode05 : Data conditioning of circuit2 display.(Di splay 019 to 036)
421 422 423 424 425 426 427 428 429 430 431	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 * Mode05 : Data conditioning of circuit2 display.(Di splay 019 to 036) *Mode05 bclr 7,Data_Out1
421 422 423 424 425 426 427 428 429 430 431 432	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 ***********************************
421 422 423 424 425 426 427 428 429 430 431	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 ***********************************
421 422 423 424 425 426 427 428 429 430 431 432 433 434	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 chr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 * Mode05 : Data conditioning of circuit2 display.(Di splay 019 to 036) ************************************
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 ***********************************
421 422 423 424 425 426 427 428 429 430 431 432 433 434	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 * Mode05 : Data conditioning of circuit2 display.(Di splay 019 to 036) * Mode05 bchr 7,Data_Out1 Ida Data_Out1 add #!18 ; Add 18 so that display will be from 19 sta Data_Out2 bset 6,Buzzer
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 ***********************************
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 *** Mode05 : Data conditioning of circuit2 display.(Di splay 019 to 036) *** Mode05 bchr 7,Data_Out1 lda Data_Out1 add #!18 ; Add 18 so that display will be from 19 sta Data_Out1 chr Data_Out2 bset 6,Buzzer bra Discon00 ***********************************
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439	<pre>sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 * Mode05 : Data conditioning of circuit2 display.(Di splay 019 to 036) * Mode05 bclr 7,Data_Out1 lda Data_Out1 add #118 ; Add 18 so that display will be from 19 sta Data_Out2 bset 6,Buzzer bra Discon00 ***********************************</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438	<pre>sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 * Mode05 : Data conditioning of circuit2 display.(Di splay 019 to 036) * Mode05 bchr 7,Data_Out1 lda Data_Out1 add #118 ; Add 18 so that display will</pre>
$\begin{array}{c} 421\\ 422\\ 423\\ 424\\ 425\\ 426\\ 427\\ 428\\ 429\\ 430\\ 431\\ 432\\ 433\\ 434\\ 435\\ 436\\ 437\\ 438\\ 439\\ 440\\ 441\\ 442\end{array}$	<pre>sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 * Mode05 : Data conditioning of circuit2 display.(Di splay 019 to 036) * Mode05 bchr 7,Data_Out1 lda Data_Out1 add #!18 ; Add 18 so that display will be from 19 sta Data_Out2 bset 6,Buzzer bra Discon00 *** Mode06 : The data is 00.It indicates that no key press is found. * Dispaly 000 and Buzzer off. Mode06 clr Data_Out1 </pre>
$\begin{array}{c} 421\\ 422\\ 423\\ 424\\ 425\\ 426\\ 427\\ 428\\ 429\\ 430\\ 431\\ 432\\ 433\\ 434\\ 435\\ 436\\ 437\\ 438\\ 439\\ 440\\ 441\\ \end{array}$	sta Data_Out1 Mode03 brset 7,Data_Out1,Mode05 ; Msb of the data decides whether ; it is circuit1 or circuit2 data Mode04 clr Data_Out2 ; bset 6,Buzzer ; Buzzer on bra Discon00 ***********************************

040F [05] 3FD0 0411 [03] 2025	444 445	clr Buzzer bra Discon00				

	448	 Mode07 : For Mode 1 display. * : The Call points will be displayed as 001 to 018 and 101 to118. 				
	449					
0413 [03] BEC9	450	Mode07 ldx Disp_Address				
0415 [03] F6 0416 [02] A100	$451 \\ 452$	lda ,x cmp #!00				
0418 [03] 2718	453	beq Mode12				
	454	**************************************				
	$455 \\ 456$	* Mode08 : For 001 to 018				
041A [03] BEC9	457	Mode08 ldx Disp_Address				
041C [03] F6 041D [04] B7CE	458 459	lda ,x sta Data_Out1				
	460					
041F [05] 0ECE06	461 462	Mode09 brset 7,Data_Out1,Mode11				
0422 [05] 3FCF		Mode10 clr Data_Out2 ; Display will be 001 to 018				
0424 [05] 1CD0	464	bset 6,Buzzer				
0426 [03] 2010	465 466	bra Discon00				
	467	* Mode11 : For 101 to 118				
0428 [05] 1FCE	468	Model1 bclr 7.Data Out1				
0428 [05] IFCE 042A [02] A601	409	Model1 bclr 7,Data_Out1 lda #!01 ; Display will be 101 to 118.				
042C [04] B7CF	471	sta Data_Out2				
042E [05] 1CD0 0430 [03] 2006	472 473	bset 6,Buzzer bra Discon00				
	474	**********				
	475	* Mode12: No Key press is found; Display 000,Buzzer off.				
0420 [05] 2505	476	**************************************				
0432 [05] 3FCE 0434 [05] 3FCF	477 478	Mode12 clr Data_Out1 clr Data_Out2				
0436 [05] 3FD0	479	clr Buzzer				
		* Discon:- This part of the programme gets the BCD				
		equivalant of the hex data.				
	482					
	483	isplay purpase,the data should * be in BCD format.				
	484	* Data_Out1 and Data_Out2 stores the data to be				
	485	displayed in hex. * Digit_1,Digit_2 and Digit_3 stores the data in				
	486	* First the hex data is converted to decimal				
		equivalant by adding 06 or its				
	487	* multiple (for 0 to 9 hex add 00, for 0ahex to 13hex add 06, for 14hex to				
	488	* 1d hex add 0c hex and for 1e to 27 hex add 12hex.)				
0499 [09] DCCE		Discon00 lda Data_Out1 ;				
0438 [03] B6CE 043A [05] 3FC0	490 491	Discon00 Ida Data_Out1 ; clr Digit_1				
0.400 [00] 4004	492					
043C [02] A00A 043E [03] 2504	493 494	Discon01 sub #\$0a ; Substaract 10 decimal bcs Discon02				
0440 [05] 3CC0	495	inc digit_1				
0442 [03] 20F8	496 497	bra Discon01				
0444 [03] B6C0		Discon02 lda digit_1 ; Get the multiple of 6				
0446 [02] AE06	499 500	ldx #\$06 mul				
0448 [11] 42 0449 [03] BBCE	500 501	add Data_Out1				
044B [04] B7CE	502	sta Data_Out1 ; equivalant of hex in decimal.				
044D [05] 3FC0	$503 \\ 504$	Discon03 clr Digit_1				
044F [05] 3FC1	505	clr Digit_2				
0451 [05] 3FC2	506 507	clr Digit_3				
	508	* Discon04 : Convert the decimal to bcd one.				
0459 [09] DCCE		Discon04 lda Data Out1				
0453 [03] B6CE 0455 [02] A40F	510	and #%00001111				
0457 [04] B7C0	512	sta digit_1 ; bcd equivalant of lsb of Data Out1				
	513					
0459 [03] B6CE		Discon05 lda Data_out1				
045B [02] A4F0 045D [03] 44	$515 \\ 516$	and #%11110000 lsra				
045E [03] 44	517	lsra				
045F [03] 44 0460 [03] 44	518 519	lsra lsra				
0461 [04] B7C1	520	sta digit_2 ; bcd equivalant of Msb of				
	521	Data_Out1				
0463 [03] B6CF	522	Discon06 lda Data_out2				
0465 [02] A40F 0467 [04] B7C2	$523 \\ 524$	and #%00001111 sta digit 3 : hed equivalant				
0467 [04] B7C2		sta digit_3 ; bcd equivalant of lsb of Data_Out1				
	525	****************				

ware

0469 [03] B6C0 046B [02] A40F 046D [02] 97

0471 [02] AA06 0473 [03] BAD0

0475 [04] B7C3

0477 [03] B6C1 0479 [02] A40F

047F [02] AA05

0481 [03] BAD0

0483 [04] B7C4

0485 [03] B6C2 0487 [02] A40F 0489 [02] 97

048D [02] AA03 048F [03] BAD0

0491 [04] B7C5

****** 0493 [02] 8F

0497 [05] 1408

049D [03] B6D1

049F [02] A164

04A1 [03] 2404

04A3 [05] 3CD1

04A5 [03] 2004 04A7 [02] A665

04A9 [04] B7D1

04AB [02] A6BF 04AD [03] BAD0 04AF [04] B700

04B1 [02] A6FF

04B3 [04] B704

04B5 [05] 1001

04B7 [03] B6C3

0499 [03] 4F

526 *Discon07 : Get the Display equivalant of each digit. 527 * The bcd of each digit is fed to the BCD to Seven segement convertor 7447. 528 * The display equivalant(as per the hardarrengement) is stored from 7c0 hex 529 * onwords.
530 * This part of the program gets the display equivalant of each bcd number. 531 * Position_1, Position_2 and Position_3 stores the 533 Discon07 lda digit_1 534and #%00001111 535 tax 046E [05] D607C0 536lda \$07c0,x 537 ora #%00000110 538 ora Buzzer 539 sta position_1 ; Digit1 data 540 ***** 540 541 Discon08 lda digit_2 542 and #%00001111 047B [02] 97 047C [05] D607C0 543tax \$07c0,x 544lda 545 #%00000101 ora 546ora Buzzer 547 sta position_2 ; Digit2 data 548 549 Discon09 lda digit_3 550 and #%00001111 550 551 tax 048A [05] D607C0 \$07c0,x 552lda 553#%00000011 ora Buzzer 554ora 555 sta position_3 ; Digit3 data 0 uala ********** 556 557 * Wait :- As scanning is done after 10 miliseconds, Controller is in low power mode 558 * till fresh data is availabl till fresh data is available. 559560 Wait wait 0494 [03] CC032C 561563 * Timer :- This is a Timer interrupt service routine. The 16 bit internal Timer of the Microcontroller is software programmed 564 * to give interrupt after every 565 * 10 miliseconds.During the Timer interrupt service routine two tasks are 566 * completed. completed. i) Refreshing of multiplexed displays. 567 * 568 * As the it very essential to refresh the multiplexed display at a frequency 669 * of 50Hz or more;during this interrupt 569 * routine displays will be refreshed. This gives a refreshing frequency of 100Hz. ii) Scanning of Calling Points. Both the circuits are scanned and the 570 * 571 *572 * digital equivalant of output voltages ugital equivalant of output voltages 573 * will be stored in two registers. 574 ****** 575 Timer bset rtifr,tscr 576 clra Copr ; kick the watchdog timer 577 sta Copr ; kick the watchdog timer 049A [05] C707F0 579 * Timer01 : Take care of the debounce time. 580 581 Timer01 lda Debounce 582 cmp #!100 583 bhs Timer03 584 585 Timer02 inc Debounce bra Disp00 586 587 Timer03 lda #!101 sta Debounce 588 589592 Disp00 lda #%10111111 Buzzer 593 ora sta Porta 594595lda #\$ff 596 sta ; Assign Porta in Output mode. ddra 597 bset Pb0,portb ; Make the Latch transparant. 599 * Disp01 : Refresh the digit1. Keep the digit1 on for 1 milisecond. 601 Disp01 lda position_1 ; Digit 1 Display

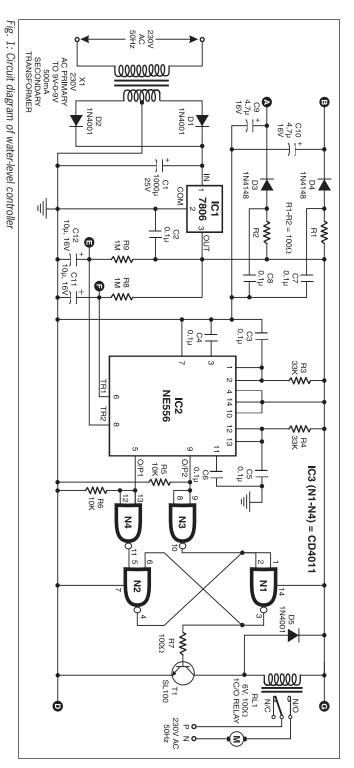
04B9 [04] B700 04BB [06] CD052B	602 sta porta 603 Disp02 jsr Delay	04FD [02] A408 669 and #%00001000 04FF [02] A100 670 cmp #%0000000
04DD [00] CD052D	604 *****	0501 [03] 26F8 671 bne Adc11
	605 * Disp03 : Refresh the digit2.Keep the digit2 on for 1 milisecond. 606 ***********************************	672 0503 [05] 1B01 673 Adc12 bclr pb5,portb ; Read low 674
04BE [03] B6C4 04C0 [04] B700	607 Disp03 lda position_2 ; Digit 2 Display 608 sta porta	0505 [06] CD0533 675 Adc13 jsr Delay2 0508 [03] B600 676 Adc14 lda porta ; Data is available on data bus.
04C2 [06] CD052B	609 Disp04 jsr Delay 610 ************************************	050A [04] B7C7 677 sta adc_data2 ; ADC data is stored 678
0.405 (00) D.005	611 * Disp06 : Refresh the digit3.Keep the digit3 on for 1 milisecond. 612 ************************************	050C [05] 1A01 679 Adc15 bset pb5,portb ; Read high 050E [05] 1401 680 bset Pb2,Portb ; Circuit 1
04C5 [03] B6C5 04C7 [04] B700	613 Disp06 lda position_3 614 sta porta	681 Selected for next data read.
04C9 [06] CD052B	615 Disp07 jsr Delay 616 ***********************************	0510 [02] A6FF 682 Adc16 lda #\$ff ; Port A in Input mode. 0512 [04] B700 683 sta porta
	617 * Disp08: Refreshing is over. Switch of all the digits to save the power. Also Make	0514 [04] B704 684 sta ddra 0516 [09] 80 685 rti
	618 [*] the latch Non Transperant so any changes	686 ***********************************
	on the Port A bus will not change 619 * the status of displays. 620 ************************************	687 * Snooze:Here the Buzzer can be snoozed by receiving the call.A Call Acknowledge key
04CC [02] A6BF	621 Disp08 lda #%10111111	688 * is used for this purpose. The Call Acknowledge key generates the Interrupt
04CE [03] BAD0 04D0 [04] B700	622 ora Buzzer 623 sta Porta	689 * request. Following Interrupt service routine snoozes as well as displays any
04D2 [05] 1101	624 bclr Pb0,portb ; Latch Non Transparant 625	690 * pending call.A key debounce time of 1 second is provided.
	626 * Adc: Scanning of the Calling Points.	691 ************************************
	627 * ADC is used for reading the output voltages of Circuit 1 and Circuit2.	0517 [05] 0DD010 692 snooze brclr 6,Buzzer,snooze4 693
	628 *Multiplexer 4051 is used for selecting the circuit 1 or 2. 629 * While reading the Adc data,Port A is	051A [03] B6D1 694 snooze1 lda Debounce 051C [02] A164 695 cmp #!100
	assigned as input port. Port B pins are 630 * used for providing the control signals. End	051E [03] 230A 696 bls snooze4 ; Wait for debounce period of 1 second.
	of Conversion is indicated by	697
	631 * Intr signal. 632 * The digital equivalants of circuit1 and 2	0520 [03] BEC9 698 snooze2 ldx Disp_Address 0522 [03] 4F 699 clra
	are stored in registers adc_data1 633 * and adc_data2.	0523 [04] F7 700 sta ,x 0524 [05] 3CC9 701 inc Disp_Address ; Display the pending call
	634 * At the end of conversion, the Port A is assigned as output port again.	702 0526 [05] 3FD0 703 snooze3 clr Buzzer ; Snooze the buzzer.
	635 **Adc00 : Reading of Circuit1 output.	0528 [05] 3FD1 704 clr Debounce 705
0 (D ([00]) 000	637 *******	052A [09] 80 706 snooze4 rti
04D4 [02] A600 04D6 [04] B704	638 Adc00 lda #\$00 639 sta ddra ; Take Port A in Input mode.	708 * Delay : Provides delay of
04D8 [05] 1901	640 bclr pb4,portb ; Ensure Write signal to low 641	709 ********
04DA [06] CD0533 04DD [05] 1801	642 Adc01 jsr Delay2 ; Keep it low. 643 Adc02 bset pb4,portb; Write high,Conversion starts.	052B [02] AEFA 710 Delay ldx #!250 711
	644	052D [03] 5A 712 Delay1 decx
04DF [03] B601	645 Adc03 lda Portb ; Wait for End of conversion.Intr signal	052E [02] A300 713 cpx #\$00 0530 [03] 26FB 714 bne Delay1
04E1 [02] A408	646 ; goes low at the end of conversion. 647 and #%00001000	0532 [06] 81 715 rts 716 ************************************
04E3 [02] A100 04E5 [03] 26F8	648 cmp #%0000000 649 bne Adc03	********* 717 * Delay2: Provides delay of
04E7 [05] 1B01	650 651 Adc04 bclr pb5,portb ; Read low	718 ************************************
04E9 [06] CD0533	652 653 Adc05 jsr Delay2	720 0535 [03] 5A 721 Delay3 decx
	654	0536 [02] A300 722 cpx #\$00
04EC [03] B600	data bus of adc.	0538 [03] 26FB 723 bne Delay3 053A [06] 81 724 rts 795 ************************************
04EE [04] B7C6	656 sta adc_data1 ; ADC data is stored 657	******
04F0 [05] 1A01	658 Adc07 bset pb5,portb ; Read high 659 ************************************	726 0701 727 org \$0701
	660 * Adc08 : Reading of Circuit2 output. 661 ***********************************	0701 0F1A2632 728 fcb $!15,!26,!38,!50,!62,!72,!82,!92,!103,!1$ 14
04F2 [05] 1501	662 Adc08 bclr Pb2,Portb ; Select circuit2 using	3E48525C
04F4 [05] 1901	multiplexer. 663 bclr pb4,portb ; Write low	6772 070B 7D89939C 729 fcb !125,!137,!147,!156,!170,!188,!200
04F6 [06] CD052B	664 665 Adc09 jsr Delay	AABCC8 730 ***********************************
04F9 [05] 1801	666 Adc10 bset pb4,portb ; Write high, Conversion starts.	07C0 731 org \$07c0 07C0 00801090 732 fcb \$00,\$80,\$10,\$90,\$08,\$88,\$18,\$98,\$20,\$a0
04FB [03] B601	667 668 Adc11 lda Portb ; Read Intr signal from adc	0881898 20A0
041.D [00] D001	ooo Aucii iua forto ; reau intr signai irom auc	20/40

AUTOMATIC WATER-LEVEL CONTROLLER

NIZAR P.I.

Here ere's an automatic water-level controller for overhead tanks. It uses an infrared (IR) transmitter and a receiver to control the operation of the centrifugal water pump. The pump controller circuit is built around dual-timer IC NE556 and NAND gate CD4011. IC NE556 contains equivalent of two NE555 timers. The IR transmitter transmits 38kHz signals and relay driver transistor SL100 controls the motor operation.

The system


The automatic water-level controller comprises an electronic circuitry and a me-

	PARTS LIST			
Semiconducto	ors:			
IC1	- 7806 +6V regulator			
IC2	- NE556 dual timer			
IC3	- CD4011 quad 2-input NAND			
IC4 D1, D2, D5 D3, D4 LED1, LED2 RX1-RX2	gate - NE555 timer - 1N4001 rectifier diode - 1N4148 diode - Infrared transmitter LED - Infrared receiver module (TSOP1738)			
T1	- SL100 npn transistor			
Resistors (all ¼-watt, ±5% carbon, unless stated otherwise):				
R1, R2, R7, R10 R3, R4 R5, R6, R11 R12 VR1	 100-ohm 33-kilo-ohm 1-mega-ohm 4.7-kilo-ohm 10-kilo-ohm preset 			
Capacitors:				
C1 C2-C8 C9, C10 C11, C12 C13 C14 C15	 1000µF, 25V electrolytic 0.1µF ceramic disk 4.7µF, 16V electrolytic 10µF, 16V electrolytic 100µF, 16V electrolytic 0.001µF ceramic disk 0.01µF ceramic disk 			
Miscellaneou	8:			
S1 X1 RL1, RL2	 Push-to-on tactile switch 230V AC primary to 9V-0-9V, 500mA secondary transformer 6V, 100Ω, 1C/O relay Light-weight opaque float Transparent tube for capillary 			
	······································			

chanical capillary arrangement.

Electronic circuitry. Fig. 1 shows the circuit of automatic water-level controller. The components used in this circuit are low-cost and readily available in the market. The power supply is built around a 9V-0-9V, 500mA step-down transformer (X1), rectifier comprising diodes D1 and D2, and a filter capacitor (C1). The 6V regulator provides regulated supply to the circuit.

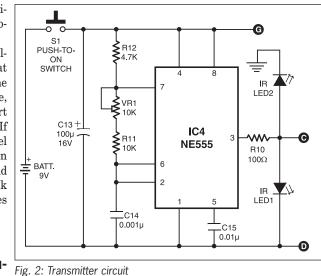
Both the timers of NE556 (IC2) are used in the monostable mode. Trigger input pins 6 and 8 of IC2 are connected to output pins F and E of sensors RX1 and RX2, respectively. (The capillary tube with sensors arrangement is shown in Fig. 3). Output pins 5 and 9 of IC2 are connected to the inputs of NAND gates N3 and N4. The outputs of NAND gates N3 and N4 are further connected to the RS

flip-flop built around NAND gates N1 and N2.

Power supply terminals A and B are connected to +Vcc pins of RX1 and RX2 sensors (marked A and B), respectively. If you don't want to use a 9V battery for the transmitter circuit, connect points G and D in the pump controller circuit to the respective points (G and D) in the transmitter circuit.

Fig. 2 shows the transmitter circuit built around timer NE555. Timer NE555 (IC4) is wired as an astable multivibrator producing a frequency of about 38 kHz. When switch S1 is pressed, the circuit gets supply and the two infrared transmitter LEDs connected at the output of IC4 transmit IR beams at a frequency of 38 kHz.

Mechanical capillary tube arrangement. The capillary tube arrangement with sensors is shown in Fig. 3. IR transmitter LED1 and IR receiver sensor RX1 are connected face to face both on the top and the bottom of the capillary tube. Using an adhesive, fix IR receiver modules (TSOP1738) such that their front side is oriented towards IR transmitters. A very-light-weight float made of an opaque material is placed into the transparent capillary tube. It moves along the tube, depending on the level of water, crossing IR beams from the top-level and bottom-level sensors on reaching the top and bottom level limits. The capillary tube can be made of glass or any transparent material. The sensor arrangement for the overhead tank is shown in Fig. 4.


Working of the system

The two pairs of the IR LEDs and the IR receiver modules are used for the minimum (empty) and the maximum (full) water level positions in the tanks.

When the moving object is at level A, the motor is switched on. At B and C levels also, the motor remains on and water continues to fill the tank. When the float crosses the upper IR beam to reach level D, the motor turns off, as the tank is full, and water supply to the tank stops.

As the water is consumed, its level in the tank falls from D to E, C and then to B. At these levels also, the motor remains 'off.' However, when the object crosses the lower IR beam to reach level A, the system recognises that the tank is almost empty, or water is at the minimum level, and the motor turns on again.

In case of power failure, if the object was at D, E, C or B level at the time of power failure, the motor will not start on power resumption. If it was at or below level A, the motor starts on power resumption and starts filling the tank until the float reaches level D.

Overhead tank and reservoir automation

In many houses, water is first stored in a reservoir at or near ground level and from there it is pumped up to the overhead tank on the rooftop. People generally switch on the pump when their

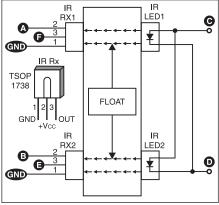
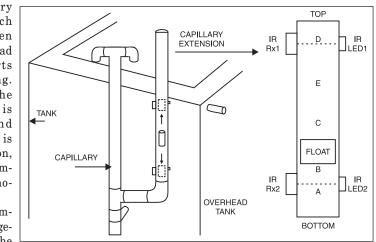
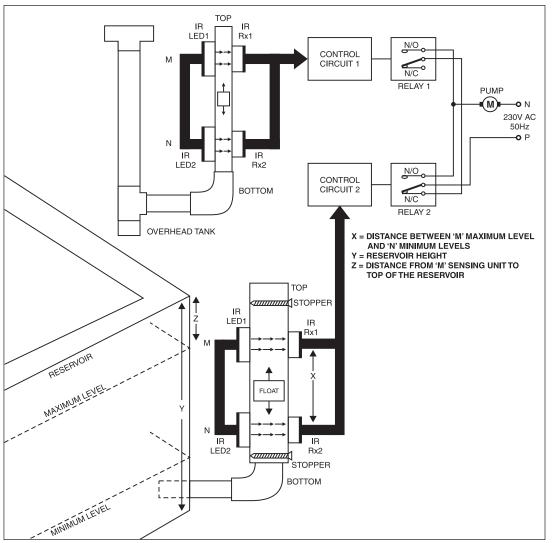



Fig. 3: Capillary tube arrangement with sensors


taps go dry and switch it off when the overhead tank starts overflowing. In case the reservoir is empty and the motor is switched on, it may damage the motor.

The complete arrangement for the tank and the reservoir for automatic operation is shown in Fig. 5. It comprises two similar arrangements of the pump controller circuit, transmitter circuit and capillary tube assembly: one for the overhead tank and the other for the reservoir. In the capillary tube arrangements, 'M' represents the top-level sensing unit and 'N' the bottom-level sensing unit for the overhead tank. The connections of relays RL1 and RL2 to the pump are not identical. This arrangement prevents the motor from working when the reservoir is empty. The control circuit 2 recognises whether water is at the minimum level of the reservoir or not.

When the reservoir is empty, the float crosses sensor N to interrupt the IR beams emanating from it, which triggers IC2 at its pin 8. The triggering of IC2 makes its output pin 9 high, which energises the relay (RL2) via IC3

overhead Fig. 4: Placing of sensors in the overhead tank

and driver transistor SL100. Now the motor starts to fill the tank up to the maximum level.

When the reservoir is full, the object crosses sensor M to interrupt the IR beams emanating from it, which triggers IC2 at its pin 6. The triggering of IC2 makes its output pin 5 high, which de-energises the relay (RL2) via IC3 and the driver transistor. Now the motor turns off and relay RL2 provides mains supply to relay RL1 connected to the control circuit 1 for the overhead tank.

X and Z distances (refer Fig. 5) in the sensor assembly depend on the height Y of the tank/reservoir. The distance X should not be below 20 cm. Otherwise, the IR beams from one sensor may interfere with IR

Fig. 5: The complete arrangement for the overhead tank and the reservoir for automatic operation

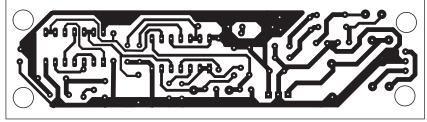


Fig. 6: Actual-size single side PCB layout for the circuit in Fig. 1

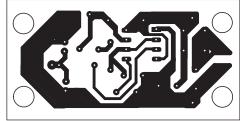


Fig. 8: Actual-size, single side PCB layout for the circuit in Fig. 2

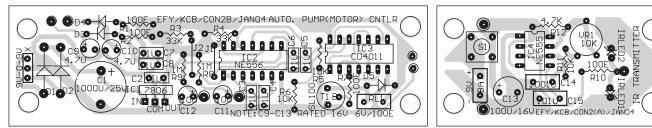


Fig. 7: Component layout for the PCB of Fig. 6

Fig. 9: Component layout for the PCB of Fig. 8

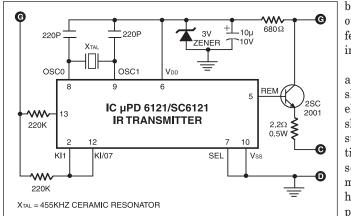


Fig. 10: Optional IR transmitter circuit

beams from the other sensor, affecting the sensing operation.

The complete arrangement is shockproof. The electronic circuit should be encapsulated in a plastic case, while the sensor arrangement should be housed in a PVC pipe. To protect the motor from high or low voltage, use a low-/high-voltage cut-off circuit.

An actual-size, single-side PCB for the circuits in Fig. 1 and Fig. 2 is shown in Fig. 6 and Fig. 7 with its comp-onent layout in Fig. 8 and Fig. 9, respectively.

Fig. 10 shows an optional IR transmitter circuit that is built around IC μ PD6121. It transmits modulated pulses with carrier frequency of 38 kHz. Simply replace the transmitter given in Fig. 2 with this circuit and connect its points G, C and D to respective points of pump controller circuit.

DIGITAL WATER-LEVEL INDICATOR CUM PUMP CONTROLLER

PARMAR LATESH B.

any circuits of water-level controller have appeared in EFY. What sets this circuit apart from all of them is that it shows the level of water far away from the location of the overhead tank. Its other features include:

1. Up to five levels of water are indicated on LED display along with beep sound.

2. DTMF receiver section controls the on/off function of the motor.

3. No battery is required to store the water level when power fails.

4. The water-level scanning section scans the water level with beep sound after power resumes.

5. When water reaches the full level, the motor turns off and provides a beep sound for about a minute.

6. When water goes below the empty level, the motor starts with beep sound.

Fig. 1 shows the remote water-level sensing and DTMF transmitter circuit. At the heart of the circuit is NAND gate CD4093 with resistor-capacitor combination and diode network that senses the water level in the overhead tank. Water inside the tank is divided into five levels, namely, Empty, 1/4th, Half, 3/4th and Full. The DTMF codes used to indicate Empty, 1/4th, Half, 3/4th and Full levels are 1, 2, 3, 4 and 5, respectively. Different levels are indicated by different colour LEDs at the DTMF receiver end.

Suppose water level goes below Empty mark. Transistor T1 stops conducting and the output of NAND gate N1 goes low through resistor R1, capacitor C1 and diode D1. At the same time, the scanning output of NAND gate N12 also goes low. So trigger pin 6 of dual-timer NE556 (IC5), which is wired as a monostable, goes low to drive its output pin 5 high. As a result, column C1 and row R1 of DTMF dialler UM91214B (IC 10) short through analogue switch CD4066 (IC8) and dial the number corresponding to the Empty level. The DTMF output at pin 7 of IC10 is transmitted through wire link to the receiver (Fig. 2). The output of dialer is connected to DTMF decoder CM8870 (IC13) to decode the received signal. The decoded output sets flip-flop CD4013 (IC15) through BCD to decimal decoder IC14 to switch on the motor with LED indication and beep sound.

As water goes up and touches different level-sensing probes, NAND gates N1, N3, N5, N7 and N9 go low one by one and the corresponding differentiator networks activate to trigger IC5 through IC7, respectively, to produce a high output and transmit the corresponding DTMF code by dialer IC10. DTMF codes are transmitted one by one as the water level goes up and touches the different sensing probes. The sensor probes should be made of stainless steel to avoid corrosion.

Timers IC5 through IC7 are wired in monostable mode. The output of the monostable goes high for about 2.4 seconds when its trigger pin goes low.

As water is consumed, its level in the tank falls below different sensor probes and the outputs of NAND gates N2, N4, N6, N8 and N10, with resistor-capacitor combination and diode network, go low one by one. This low output is applied to the trigger pin of dual-timer IC5 through IC7 and the DTMF code corresponding to the level is generated by IC10. The output of the corresponding toggle flip-flop in the receiver section goes low to turn off the related LED, which indicates that water level is below that particular level.

The main purpose behind adding the level-scanning section is to avoid malfunctioning of the receiver section due to power failure (as no battery is added to the receiver to latch the present level of the water). In case we add a battery and the power fails, the water level is latched but during this period if the water level goes below any probe, there is no way to transmit the signal from the transmitter. This leaves us with no other option but to add the level-scanning section.

When power resumes, the level-scanning section scans and checks all the levels one by one (from Empty to Full) and transmits the corresponding codes to the receiver to show the water level in the overhead tank. So when the power resumes, the output of NAND gate N11 goes low after a delay of about 7 seconds, which is set by the combination of resistor R36 and capacitor C27, and trigger pin 6 of dual-timer IC11 goes low.

One timer of IC11 is used as a monostable whose output pin 5 remains high for about 23 seconds. Since pin 5 is directly connected to reset (pin 10) of the other timer of IC11, it is also activated for 23 seconds to generate the pulse. The second timer of IC11 is wired as an astable multivibrator to generate 1-second 'on' time and 3-second 'off' time signals at its pin 9. The 1-second pulse is fed to clock pin 14 of CD4017 (IC12), which scans one of the two inputs of NAND gates N12 through N16 each one by one. The other inputs of these NAND gates are connected to the cathodes of diodes D1 through D5 from the corresponding water level. The outputs of NAND gates N12 through N16 are connected, via diodes D19 through D23 and related resistor-capacitor networks, to the cathodes of diodes D6 through D10, respectively. As a result, trigger pins of IC5 through IC7 go low one by one and the outputs of corresponding timer sections go high, which shorts the related columns and rows of DTMF tone generator IC10 through analogue switch CD4066.

Fig. 2 shows the details of receiver and level indicator circuit. In the receiver section DTMF decoder CM8870 (IC13) is used to decode the received tone signal. This

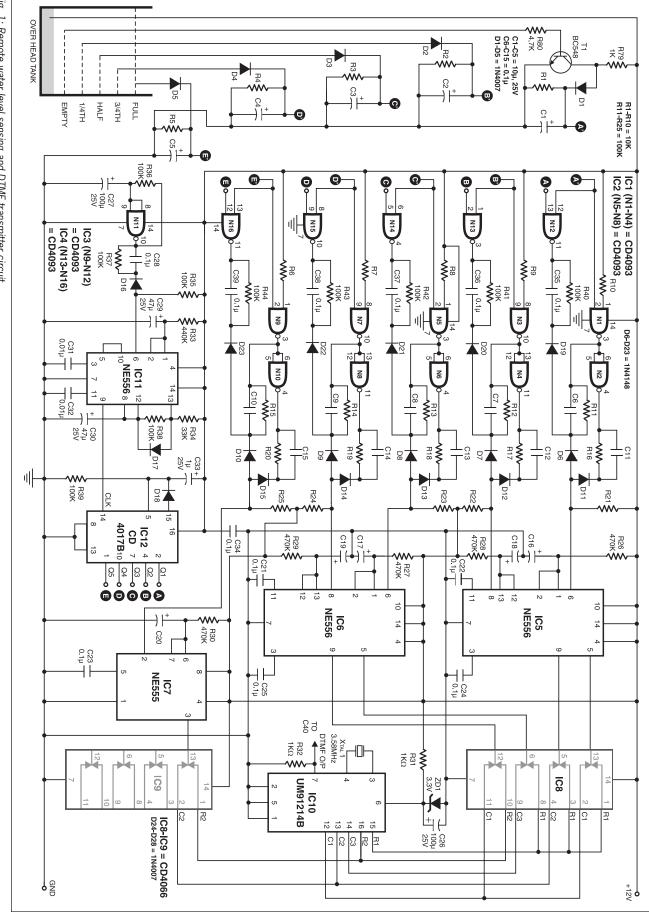
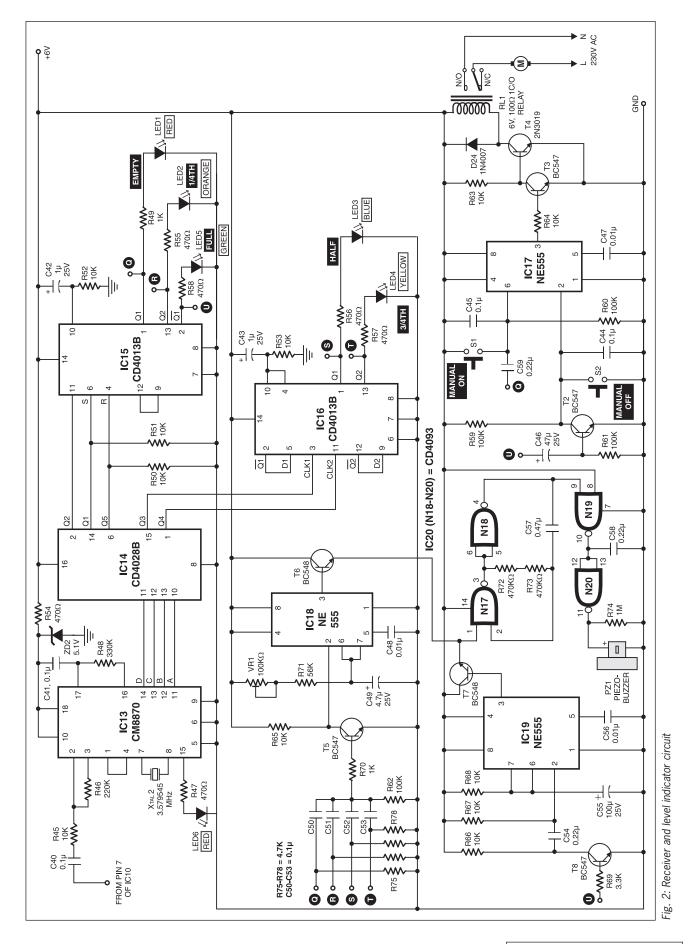



Fig. 1: Remote water level sensing and DTMF transmitter circuit

ELECTRONICS PROJECTS Vol. 25 19

PARTS LIST

PARTS LIST						
Semiconductors:						
IC1-IC4, IC20	- CD4093 quad NAND gate					
IC5, IC6, IC11	- NE556 dual timer - NE555 timer					
IC7, IC17-IC19 IC8, IC9	-CD4066 quad analogue					
IC10	switch -UM91214B DTMF tone					
	generator					
IC12	- CD4017 decade counter					
IC13 IC14	- CM8870 DTMF decoder - CD4028 BCD-to-decimal					
1014	decoder					
IC15, IC16	- CD4013 dual D-type flip-flop					
IC21	- 7812 12V regulator					
IC22	- 7806 6V regulator					
T1, T6, T7 T2, T3, T8	- BC548 npn transistor - BC547 npn transistor					
T4	- 2N3019 npn transistor					
D1-D5,	I I I I I I I I I I I I I I I I I I I					
D24-D28	- 1N4007 rectifier diode					
D6-D23 ZD1	- 1N4148 switching diode - 3.3V, 0.5W zener diode					
ZD1 ZD2	- 5.1V, 0.5W zener diode					
LED1, LED6	- Red LED					
LED2	- Orange LED					
LED3	- Blue LED					
LED4 LED5	- Yellow LED - Green LED					
Resistors (all 4/4 unless stated of	-watt, ±5% carbon,					
	nerwise).					
R1-R10, R45, R50-R53,						
R63-R68	- 10-kilo-ohm					
R11-R25,						
R35-R44,	100 kilo ohm					
R59-R62 R26-R30,	- 100-kilo-ohm					
R72, R73	- 470-kilo-ohm					
R31, R32, R49,						
R70, R79	- 1-kilo-ohm					
R33 R34	- 440-kilo-ohm - 33-kilo-ohm					
R46	- 220-kilo-ohm					
R47, R54-R58	- 470-ohm					
R48	- 330-kilo-ohm					
R69 R71	- 3.3-kilo-ohm - 56-kilo-ohm					
R74	- 1-mega-ohm					
R75-R78, R80	- 4.7-kilo-ohm					
VR1	- 100-kilo-ohm preset					
Capacitors:						
C1-C5	- 10µF, 25V electrolytic					
C6-C15, C28,	· ·					
C34-C41, C44,						
C45, C50-C53, C61-C66	- 0.1µF ceramic disk					
C16-C20, C49	- 4.7µF, 25V electrolytic					
C21-C25, C31,						
C32, C47, C48, C56	0.01 uE coromic dick					
C36 C26, C27, C55	- 0.01µF ceramic disk - 100µF, 25V electrolytic					
C29, C30, C46	- 47µF, 25V electrolytic					
C33, C42, C43	- 1µF, 25V electrolytic					
C54, C58, C59	- 0.22µF ceramic disk					
C57 C60	- 0.47μF ceramic disk - 1000μF, 25V electrolytic					
	2000pr, 207 cicculorytic					
Miscellaneous:	220V AC primer to 7 FV					
X1	- 230V AC primary to 7.5V- 0-7.5V, 1A secondary trans-					
	former					
X _{TAL1} , X _{TAL2}	- 3.578MHz crystal					
KLI	- 6V, 1C/O relay					
PZ1 S1, S2	- Piezobuzzer - Push-to-on switch					
51, 52	- 1 asii-to-off Switch					

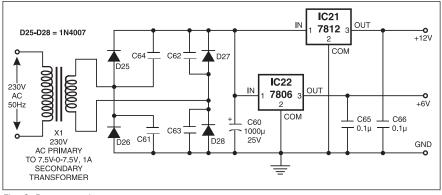


Fig. 3: Power supply

IC converts the received DTMF code into equivalent binary form. BCD-to-decimal decoder CD4028B (IC14) converts this binary code into decimal. Its Q1 through Q5 outputs are connected to 'D' flip-flop CD4013 to control the motor and indicate water level in the overhead tank through the LED. The present water level in the tank is indicated by glowing of the respective LED. When the LED goes off, it means water in the tank is below the indicated level.

Initially, when the power is switched on or the power resumes, all flip-flops of CD4013B (IC15 and IC16), except one (whose reset pin 4 is connected to pin 6 of IC14), are reset through the resistorcapacitor network at pins 4 and 10 of the two ICs. Pins 1 and 2 of IC15 are connected to pin 6 of IC17 via capacitor C59 and the base of transistor T2 via capacitor C46, respectively, to control the motor. The remaining flip-flop of IC15 is wired in set/reset mode.

When water goes below the Empty level, the set input of IC15 (as per the received signal) goes high to make outputs Q1 and Q1 high and low, respectively. The high Q1 output of IC15 energises relay RL1 and the motor is switched on automatically with the help of IC17 and transistors T3 and T4; the motor is connected through the contacts of relay RL1.

For manually switching on the motor, press switch S1.

When water level touches the 'Full' probe, the reset input (as per the received signal) of IC15 goes high to make Q1 and Q1 outputs low and high, respectively. The high Q1 output of IC15 de-energises relay RL1 and the motor turns off automatically with the help of IC17 and transistors T3 and T4. You can also manually switch off the motor by pressing switch S2.

The motor-off state is indicated by a one-minute beep sound. NE555 (IC17) is

wired as a bistable multivibrator. When pin 2 of IC17 goes low, its output goes high to drive transistor T3 and transistor T4 de-energises relay RL1. When pin 6 of IC17 gets a high pulse, its output goes low and transistor T3 doesn't conduct while transistor T4 conducts to energise relay RL1. The motor on/off (for empty/full tank) is indicated by the respective LED.

The beeper section generates beep each time the LED indicates a new water level. At the output of flip-flop CD4013B, points Q, R, S, T and U for Empty, 1/4th, Half, 3/4th and Full level indications are connected to capacitors C50 through C53 and R67 at the base of transistor T8, respectively.

When the new water level is latched, the corresponding output of the flip-flop goes high and the LED lights up. At the same time, a small spike is passed to saturate transistor T5 to trigger pin 2 of monostable IC18. The output of monostable goes high for about 500 ms, which is connected (through transistor T6) to NAND gate N17 to activate the NAND gate oscillator. IC20 is wired as an oscillator.

When the tank is full, pin 2 of IC15 goes high to trigger IC19 through transistor T8. IC19 is wired as a one-minute monostable and transistor T7 activates the oscillator during this period. One-minute beep indicates that the tank is full and the motor has turned off.

The power supply circuit is shown in Fig. 3. The AC mains supply is stepped down by transformer X1 to deliver a secondary output of 7.5V-0-7.5V AC (15V AC), 1A. The output of the transformer is rectified by a full-wave bridge rectifier comprising diodes D25 through D28. Capacitor C60 acts as a filter to eliminate ripples. IC12 and IC22 provide regulated terminated on connector Con-1(A). These are to be extended to corresponding points of connector Con-1(B). Pads have been

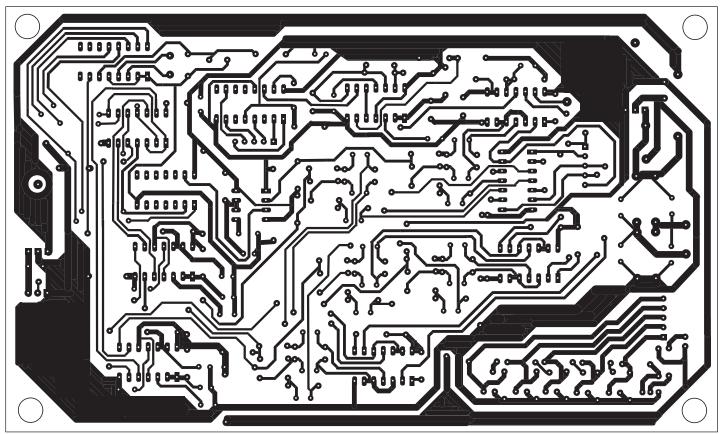


Fig. 4: Actual-size, single-side PCB for circuits of Figs 1 and 3 (PCB-1)

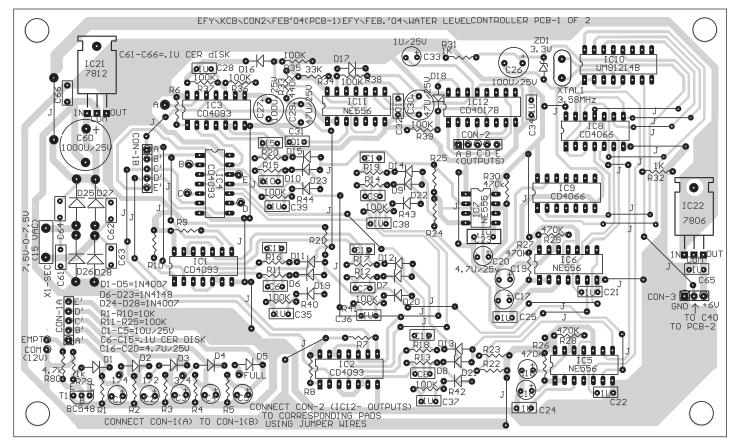


Fig. 5: Component layout for PCB-1

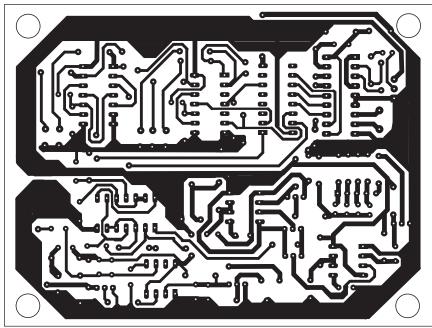


Fig. 6: Actual-size, single-side PCB for Fig. 2 (PCB-2)

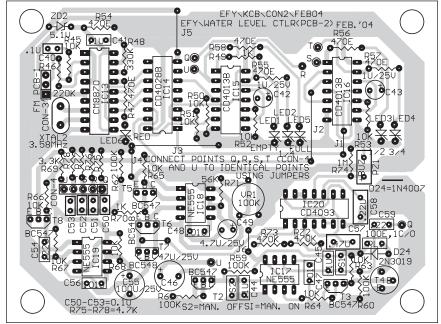


Fig. 7: Component layout for PCB-2

provided (and indicated) for connecting the probes using wire jumpers.

Similarly, PCB for Fig. 2 is shown in Fig. 6 with its component layout in Fig. 7. Identical points (Q, R, S, T and U)

Readers' comments:

Q1. IC6 (NE556) gets heated excessively within 5 to 6 seconds. As a result, I had to stop at the very first stage of testing. Note that the manual 'on'/off' switch (S1) is functioning properly.

 $\mathbf{Q2.}$ When 12V power supply to the

terminated on connector/pads need to be connected together using wire jumpers. 6V power supply including ground and DTMF output from connector Con-3 in PCB-1 is to be connected to Con-3 on PCB-2.

circuit is switched on, after 5 to 10 seconds, a 'tick-tick' sound comes from the buzzer. Is it the sound of DTMF generated by IC10 when scanning the water level?

Q3. In Fig. 2, what is the function of variable resistor VR1 (100k)?

Q4. I have used 0.1pF and 0.01pF ceramic disk capacitors in place of 0.1μ F and 0.01μ F capacitors. The vendor says these will do the job. Please give your suggestion.

Q5. If I switch on mains when the water tank is empty, what time will it take to scan and start the motor relay?

Somnath Roy Through e-mail

Reply to Somnath Roy by the author Parmar Latesh B.:

I am very thankful to Mr Roy for his keen interest in my circuit. The clarifications to his doubts are as follows:

A1. IC6 is getting heated due to some wrong connection around it or shorting of its two adjacent pins. Check properly. If everything is okay; the power supply may be faulty. Replace the transformer with one having a rating of 12-0-12V, 750 mA.

A2. The 'tick-tick' sound is not a DTMF tone generated by IC10. It may be due to the water level sensed by the probes (sensors) in the tank. So whenever the power to the transmitter section is switched on, the tick-tick sound is heard after 3 to 4 seconds as the level is scanned one by one.

A3. VR1 is used to adjust the time duration up to which the output of IC18 should remain high. This output activates NAND gate N17 of the buzzer section.

A4. The values of 0.1pF and 0.01pF cannot be replaced with microfarads (μ F). These values are much less than microfarads. The values of ceramic or polyester capacitors are always marked in picofarads (pF). For example, the values of ceramic capacitors marked as 104 and 103 are read as 100,000 pF and 10,000 pF, respectively. But these values can be converted into microfarad units. Thus, when converted into microfarad units, 104 and 103 become 0.1 μ F and 0.01 μ F, respectively. (For conversion into different units, please refer to page 24 of Q&A section in April 2004 issue.)

A5. The level-scanning section will take approx. 23 seconds to scan all the levels. This time delay is provided by IC11 and R33 and C29. There is no predetermined time to switch on the motor. One can do it at any time manually, or soon after switching on the circuit. The water level is scanned only after the power to the circuit is switched on.

PC-BASED DATA LOGGER

M. DEEPAK

ere's a simple PC-based data logger to acquire slowly varying signals through the parallel port of a PC. It uses a 'C' program for data acquisition and plotting a voltage vs time graph on the monitor screen. This data logger can be used for automating simple experiments in physics laboratories and or monitoring slowly varying physical variables such as temperature in industries. Its range of operation, resolution and the maximum data rate are -5V to +5V, 39.2 mV and 18 samples per second, respectively.

Power supply

The data logger requires regulated +5V, -5V, +12V and -12V DC supplies, which are obtained using regulator ICs 7805, 7905, 7812 and 7912, respectively. The power supply circuit uses a 15V-0-15V centre-tapped transformer. The outputs of the secondary of the transformer are applied to two full-wave rectifiers. The output of full-wave rectifier comprising diodes D3 and D4 is fed to positive DC regulator ICs 7812 (IC1) and 7805 (IC2), and the output of full-wave rectifier comprising diodes D1 and D2 is fed to negative DC regulator ICs 7912 (IC3) and 7905 (IC4). The outputs of rectifiers are pulsating DCs. Each rectifier output is filtered by capacitors C1 and C3 (1000 µF, 25V), respectively. Regulator ICs 7812 and 7912 provide regulated +12V and -12V DC. The outputs of ICs 7812 and 7912 are also given to the inputs of regulator ICs 7805 and 7905 to obtain +5V and -5V DC, respectively.

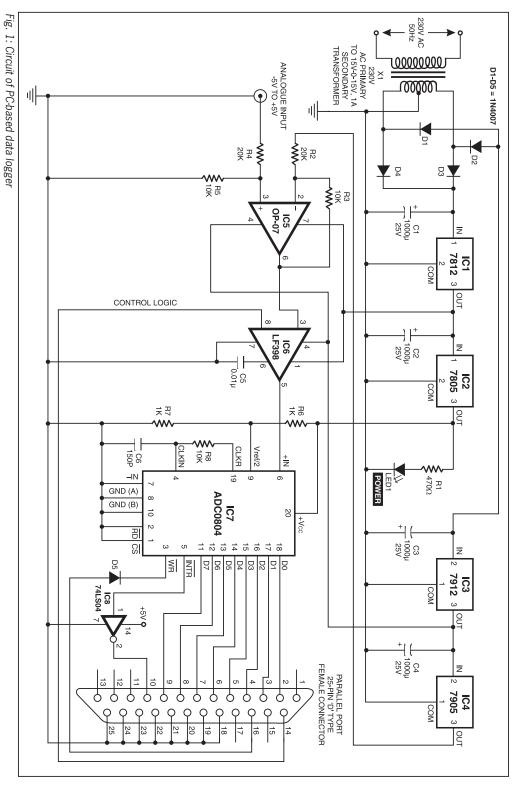


Fig. 2: Squarewave output for a squarewave input of 1Hz, 4V

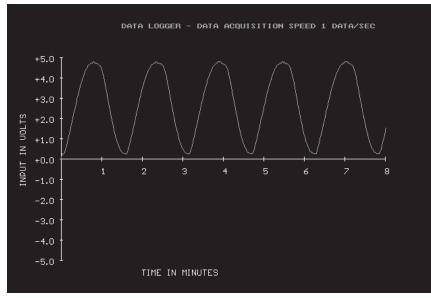


Fig. 3: Sinewave output for a sinewave input of 1Hz, 5V

Circuit description

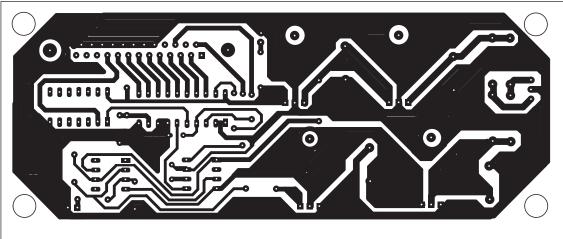
Fig. 1 shows the circuit of the PCbased data logger. It uses analogue-to-digital converter ADC0804 (IC7), sample-andhold IC LF398 (IC6) and op-amp IC OP-07 (IC5). The op-amp is in the differential amplifier configuration and transforms the input voltage in the range of -5V to +5V to the range 0 to +5V. It operates off +12V and -12V DC supplies. Resistors R2 and R4 (each 20 kilo-ohms) are input series resistors. Feedback resistor R3 and biasing resistor R5 (each 10 kilo-ohms) along with the input resistors set the gain of the amplifier to 0.5. The output voltage at pin 6 of IC5 is given by the following relationship: Therefore, for the inputs of -5V, 0V

$$V_o = \frac{V_{in}+5}{2}$$

and +5V, the outputs are 0V, +2.5V and +5V, respectively. The -5V at the inverting input of IC5 shifts its output level to above 0V. Thus for a swing of input between -5V and +5V, the output swings from 0 to +5V.

The output of the op-amp is applied to input pin 3 of IC6 (LF398). IC LF398 also operates off +12V and -12V DC. It has a small acquisition time (10 ms) and less output noise in hold mode. Droop

	PARTS LIST			
Semiconductors:				
IC1 IC2 IC2 IC3 IC4 IC5 IC6 IC7 IC8	 7812 +12V regulator 7805 +5V regulator 7912 -12V regulator 7905 -5V regulator OP-07 op-amp LF398 sample-and-hold amplifier ADC0804 analogue-to-digital converter 74LS04 hex inverter 			
D1-D5 LED1	 74LS04 hex inverter 1N4007 rectifier diodes Power-indicator red LED 			
Resistors (all unless stated R1 R2, R4 R3, R5, R8 R6, R7	 4-watt, ±5% carbon, otherwise): 470-ohm 20-kilo-ohm 10-kilo-ohm 1-kilo-ohm 			
Capacitors: C1-C4 C5 C6	 1-kilo-onm 1000μF, 25V electrolytic capacitors 0.01μF ceramic disk capacitor 150pF ceramic disk capacitor 			
Miscellaneou X1	 s: 230V AC primary to 15V-0- 15V, 1A secondary step-down transformer 25-pin D type female connector Two 25-pin D type male connectors (for connecting the circuit to the female connector at the back of the PC) 			


rate is low at 10^{-5} V/ms with 0.01μ F polypropylene hold capacitor C5 connected to its pin 6. The control logic signal from pin 14 of the parallel port to pin 8 of this IC controls sample and hold operation. Logic 1 puts the device in sample mode and logic 0 puts it in hold mode. The output is obtained at pin 5 while pin 7 is grounded.

IC ADC0804 is an 8-bit, successive approximation type ADC that requires 5V DC regulated power supply. It has an in-built clock generator whose operating frequency (f) is given by:

f = 1/1.1 RC

The frequency of clock generation is set to approximately 610 kHz by resistor R8 (10 kilo-ohms) and capacitor C6 (150 pF). The ADC converts analogue signals in the range of 0 to +5V to 8-bit digital data. The conversion time is approximately 100 ms.

The output of sample-and-hold IC6 at pin 5 is applied to the +IN (pin 6) of the ADC. The –IN (pin 7) of the ADC is grounded. Positive 5V is applied to pin 20 and +2.5V is applied to $V_{ref}/2$ input (pin 9) of the ADC through divider network comprising resistors R6 and R7 (each 1 kilo-ohm).

0

[C2

7805

Ы

o o o

J:

٦

d

0

IC4

2905

000

0000/25

0+

0000/25

Fig. 4: Actual-size, single-side PCB conductor layout for PC-based data logger

0

IC1

7812

D1-D5=1N4007

0

IC3

7912

000

EFY\KCB\CON-1\FEB04

0000/2

verted and made available on pin 14 of the parallel port. Low-tohigh transition of C2 bit that appears on pin 16 of the

parallel port is applied to \overline{WR} (pin 3) of

D-CONNECTOR(E)

0 0 0 0 0 0 0 0 0 0

0

0000

R420K

5U TN+

....

• •

the ADC to initiate data conversion. The falling edge of INTR signal from the ADC, which is inverted and applied to pin 10 of the parallel port, generates hardware interrupt thro-ugh IRQ7 line (not shown in Fig. 1). On most systems, the IRQ7 line is used to drive the first parallel port, normally

bit (pin 14) of the control register

of the parallel port. Resetting C1 bit to low provides logic 1 and setting C1 bit to high provides logic 0 on

the control input (pin 8) of the LF398 as C1 bit is internally in-

Fig. 5: Component layout for the PCB

C30

10000/254

0

The ADC operation is controlled by chip-select (\overline{CS}), read (\overline{RD}) and write (\overline{WR}) inputs. Logic 0 on \overline{CS} (pin 1) keeps the ADC enabled. Logic 0 on \overline{RD} (pin 2) enables the converted data to appear on digital output pins 11 through 18 of the ADC. The start-of-conversion pulse is applied to \overline{WR} (pin 3). When a low-to-high transition occurs on \overline{WR} pin, the ADC starts conversion. The interrupt \overline{INTR} is used as end-of-conversion signal.

After the conversion is over, the INTR signal (pin 5) goes low. The INTR signal goes high when the conversion starts and remains high during conversion. The signal is inverted by IC8 and given to pin 10 of the parallel port, which provides the required positive edge for generating hardware interrupt on end of conversion. When the INTR output goes low, it indicates that A to D conversion is completed. Digital outputs D0 through

D7 of the ADC are connected to data pins 2 through 9 of the parallel port, respectively. Since the ADC converts analogue inputs in the range of 0 to +5V to 8-bit digital data, the resolution of the ADC is 19.60 mV. (Resolution = V_{ref} /counts, where V_{ref} is 5V and counts are 256 for 8-bit digital data.)

0000

EFY-DATA LOGGER

150PICCO

ρ

o

The ADC (IC7) and the sample-andhold IC (IC6) are controlled through the parallel port of the PC. The input/output (I/O) addresses of data, status and control registers of the parallel port LPT1 are 0378H, 0379H and 037AH, respectively. The data, status and control bits are designated as D_n , S_n and C_n in the following discussion.

Pin details of the three registers of the parallel port are given in the table. The 'n' prefix to the signal name denotes that the signal is active-low. IC LF398 is set to sample/hold mode by setting C1 for the use of a printer.

Control bit 4 (C4) of the control port is a PC output line. Making this bit high enables the interrupt circuitry associated with the ACK input (pin 10) of the parallel port. The parallel port is enabled to use IRQ7 line for interrupt by setting C4 bit of the control register to high. Note that C4 bit is not associated with the parallel port connector, rather it controls logic on the printer card or the PC motherboard.

The digitised data is read from the data register, which is configured to operate in input mode by setting C5 bit of the control register high.

The outputs for 1Hz squarewave and sinewave inputs with amplitudes of 4V and 5V, respectively, are shown in Figs 2 and 3.

The actual-size, single-side PCB for PC-based data logger is shown in Fig. 4 and its component layout in Fig. 5.

Register Pin Details of the PC's Parallel Port							
Parallel port pin No.	Signal name	Direction	Register bit	Inverted			
1	nStrobe	Out	Control-0	Yes			
2	Data0	In/Out	Data-0	No			
3	Data1	In/Out	Data-1	No			
4	Data2	In/Out	Data-2	No			
5	Data3	In/Out	Data-3	No			
6	Data4	In/Out	Data-4	No			
7	Data5	In/Out	Data-5	No			
8	Data6	In/Out	Data-6	No			
9	Data7	In/Out	Data-7	No			
10	nAck	In	Status-6	No			
11	Busy	In	Status-7	Yes			
12	Paper-Out	In	Status-5	No			
13	Select	In	Status-4	No			
14	Linefeed	Out	Control-1	Yes			
15	nError	In	Status-3	No			
16	nInitialize	Out	Control-2	No			
17	nSelect-Printer	Out	Control-3	Yes			
18-25	Ground	—	—	-			

Software program

The C program (datalog.c) acquires data at the rate of one sample per second and plots a simulated time vs voltage graph on the monitor screen. It uses two interrupt service routines (ISRs): one is invoked through IRQ0 (system timer) interrupt and the other is invoked through IRQ7 (parallel port) interrupt. The ISRs are invoked by modifying the respective vectors in the interrupt vector table. However, before calling up the ISRs of application program to the interrupts, the existing vectors for the interrupts should be read from interrupt vector table and saved. The ISRs are invoked when the interrupt occurs, only if the interrupts are enabled.

The priority interrupt controller that occupies addresses 0020H and 0021H in the system I/O map is programmed to enable or disable the interrupts. The IRQ0 and IRQ7 interrupts are enabled by resetting D0 and D7 bits of the interrupt mask register at I/O address 0021H without affecting interrupt masks of other IRQs. When an ISR is invoked on an interrupt, the ISR should first execute the previous ISR which is chained to the interrupt. At the end of the ISR, it is necessary to issue an end-of-interrupt command to the interrupt controller. It is issued by sending control byte 20H to I/O address 0020H. Before terminating the application, the vectors are restored into the vector table to restore the status of the system.

The IRQ0 interrupt provides timing to start of conversion (at pin 16 of the parallel port) and the IRQ7 interrupt provides timing to end of conversion. The system timer generates 18.2 IRQ0 interrupts in one second. To set the required data rate, the counter is initialised with an appropriate value in the program; here the counter is set to '18'. The ISR for IRQ0 on each interrupt decrements the counter. When the counter reaches zero, the program sends start-of-conversion pulse to the ADC. The ISR for IRQ7 sets a flag to indicate that conversion is complete and the digitised data may be read from the data register. Before providing start-of-conversion pulse, the sample-and-hold IC is set to hold mode. Similarly, after the digital data is read from the data register, the sample-andhold IC is set back to sample mode.

Execution of the program

The screen is initialised to graphics mode and a graphic chart is simulated. It requires the graphics initialiser file EGAVGA.BGI to be in the directory C:\ TC\BGI\.

The vectors of existing timer and parallel port ISR are saved in variables 'oldintr' and 'oldtimer' using the getvect(....) statements. The vectors of ISRs of the application program, newintr() and newtimer(), are loaded into the interrupt vector table using the setvect(....) statements.

The status of interrupt masks is ob-

tained and saved. The interrupt requests IRQ0 and IRQ7 are enabled.

The variable count that determines the data rate is initialised to the required rate: 1, 2, 3, 6, 9 and 18 data samples per second, respectively.

The program then enters the main loop and keeps monitoring the timerflag and the intrflag until a key is pressed. If the intrflag is 1, the program:

1. Reads the digitised data from the data register

2. Puts the sample-and-hold IC to sample mode by resetting C1 bit to low

3. Computes coordinates of the pixel corresponding to the data

4. Plots data point and draws a line joining the previous data point on the monitor screen and completes acquisition and plotting of one data

5. Updates variables for acquiring next data

If the timerflag is 1, the program determines whether it is the time to issue SOC (start of conversation) pulse. If so, the program:

1. Puts the sample-and-hold IC to hold mode by setting C1 bit to high

2. Issues start-of-conversion pulse by setting, resetting and setting C2 bit

If a key is pressed, the program restores interrupt mask and interrupt vectors, and terminates.

ISR for IRQ0 interrupt. The timer ISR performs the following tasks on each interrupt:

1. Calls the previous ISR in the chain

2. Enters 1 into the timerflag variable to indicate the main program that a timer interrupt has occurred

3. Sends end-of-interrupt command to the interrupt controller

ISR for IRQ7 interrupt. The ISR for the IRQ7 interrupt performs the following tasks on each interrupt:

1. Calls the previous ISR in the chain

2. Enters 1 into the intrflag variable to indicate the main program that an interrupt on IRQ7 line has occurred

3. Sends end-of-interrupt command to the interrupt controller

Note. 1. The range of operation and the resolution can be improved by using 12-bit ADCs operating on a wider range of analogue inputs (such as AD574A), but this will make design of the system more complicated.

2. The data rate can be improved using a separate clock circuit on-board. However, there is limit for the same as conversion time of the ADC is 100 ms.

SO	URC	E CODE FOR DATA LOGGER (DATALOG.C)
/* DATA LOGGER - BY M DEEPAK */ #include <stdio.h> #include<conio.h> #include<graphics.h> #include<dos.h></dos.h></graphics.h></conio.h></stdio.h>		<pre>outportb(CONT, inportb(CONT) & 0xfd); /* place S/H to sample mode */</pre>
#define CONT 0x37A #define STATUS 0x379 #define DATA 0x378		/* find coordinates of pixel for the data */ newvolt = d-128; setcolor(2); yold = (oldvolt*150.0)/(127.0); contextsyl(170,50,"DATA_LOGGER - DAT
<pre>void interrupt(*oldintr)(); void interrupt newintr(); void interrupt(*oldtimer)(); void interrupt newtimer(); void drawchart();</pre>		<pre>ynew = (newvolt*150.0)/(127.0); if(time<=560)1 i n e (t i m e , 2 5 0 (int)yold,time+1,250 - (int)ynew); /* plot data and draw line</pre> ACQUISITION SPEED 1 DATA/SEC"); settextstyle(2,1,5); outtextxy(15,180,"INPUT IN VOLTS"); settextstyle(2,0,5); outtextxy(200,410,"TIME IN MINUTES");
int intrflag; int timerflag;		time+=1; setcolor(15); intrflag = 0; line(80,100,80,400); } /* draw the x and y axis */ line(80,250,560,250);
<pre>void main() { int count,i,time = 80,newvolt=0,oldvolt = unsigned char d=0,intmask; float yold,ynew; int gd=DETECT,gm;</pre>	: 0;	/* if time to initiate SOC
clrscr(); initgraph(&gd,&gm,"C:\\TC\\BGI"); /* initialize graphics mode drawchart();	*/	outportb(CONT, inportb(CONT) 0x02); /* place S/H to hold mode */ /* draw x-axis graduation and calibration */
/* simulate graphics chart oldintr = getvect(0x0f);	*/	outportb(CONT, inportb(CONT) 0x34); /* start of conver- sion pulse */ outtextxy(80+x*60,263); outtextxy(80+x*60,263);
/* save vector of old ISR for IRQ7 setvect(0x0f,newintr); /* load vector of new ISR for IRQ7	*/ */	outportb(CONT, inportb(CONT) & 0xfb); for (i=0; i<6000; i++); /* delay */
/* save vector of old ISR for IRQ0 setvect(0x08);	*/	outportb(CONT, inportb(CONT) 0x04); void interrupt newtimer() count = 18: /* new timer ISR
/* load vector of new ISR for IRQ7 intmask = inportb(0x21); /* get the masking status of IRQ7 and IRQ0	*/ */	/* set counter for next round */ oldtimer(); /* execute old ISR for IRQ0 interrupt */ timerflag = 1;
<pre>/ get the massing status of freq? and freq? intmask &= 0x7e; outportb(0x21.intmask);</pre>	,	}while(!kbhit()); outportb(0x20,0x20); /* acquire and plot the data till key is pressed */ /* issue end of interrupt command */
/* enable IRQ7 and IRQ0 interrupts intrflag=0; timerflag = 0; count = 18;	*/	intmask = 0x80; /* restore the status of interrupts */ void interrupt newintr() outportb(0x21.intmask); /* new IRQ7 ISR */
do{		setvect(0x0f,oldintr); { /* restore old vectors of ISRs for IRQ7 and IRQ0 */ oldintr();
if(intrflag) /* if digitized data is ready {	*/	setvect(0x08,oldtimer); /* execute old ISR for IRQ7 interrupt */ getch(); intrflag=1; closegraph(); outportb(0x20,0x20);
$\mathbf{d} = \mathrm{inportb}(\mathrm{DATA});$ /* read the data	*/	/* terminate the program */ /* issue end of interrupt command */ }

Readers' comments:

Q1. Does the 'PC-based Data Logger' accept 230V AC, 50 Hz as input and plot a sinusoidal graph of 5V, 1Hz as the output on the screen? If the input voltage is less than 230V, will the output voltage be less than 5V? Please clarify.

Subhabrata Gupta Jorhat Engineering College

The author M. Deepal replies:

A1. In this project, 230V AC is not the input. It is down-converted to 5V and 12V for use as power supplies for the

circuit. It has nothing to do with the voltage that is plotted on the screen. The signal plotted on the screen is the corresponding input given as the input to IC OP-07. The range of input signal is -5 to +5V.

LIFT OVERLOAD PREVENTER

NANDHA KUMART.

Here's a lift safety system that stops lift operation when the number of persons inside the lift exceeds the lift capacity. It can be installed in factories or other large establishments where lift is used. The circuit can also be used as visitor counter or room power control.

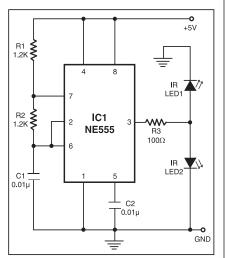


Fig. 1: Transmitter

Two transmitter and receiver pairs are used at the entry gate of the lift: one pair comprising IR LED1 and IR RX1 is installed outside the gate, while the other pair comprising IR LED2 and IR RX2 is installed inside the gate. Proper orientation of receiver and transmitter pairs is very important. The display section displays the number of persons inside the lift.

The circuit

Basically, the circuit comprises the following four sections:

- 1. Transmitter
- 2. Receiver (pulse generator)
- 3. Lift safety control
- 4. Display

1. The transmitter. Fig. 1 shows the transmitter section, where timer NE555 (IC1) is used as an astable multivibrator to produce 38kHz transmitting frequency for IR LED1 and LED2.

2. The receiver (pulse generator). The IR beams transmitted by LED1 and LED2 are incident on the corresponding infrared receiver modules RX1 and RX2 of the receiver section (refer Fig. 2), which produce a low output if the IR beam is interrupted.

When a person enters the lift room, the first and the second IR beams get interrupted in that order. On the other hand, when a person leaves the lift, the second beam is cut first and then the first beam. When the two IR beams are interrupted one after another, a pulse is generated at pin 3 of timers IC2 and IC3 each and then both the pulses combine to form a single pulse at pin 2 of IC4 or IC5 (depending on whether a person enters or leaves the lift), which provides a clock for up or down counting.

When a person enters the lift, timers IC2 and IC3 get triggered in that order due to interruption of the first beam followed by interruption of the second beam. Triggering of timer IC2 charges capacitor C13 to drive transistor T1. At the same time, a high output appears across diode D6 due to triggering of timer IC3. This high output triggers IC4. The high output

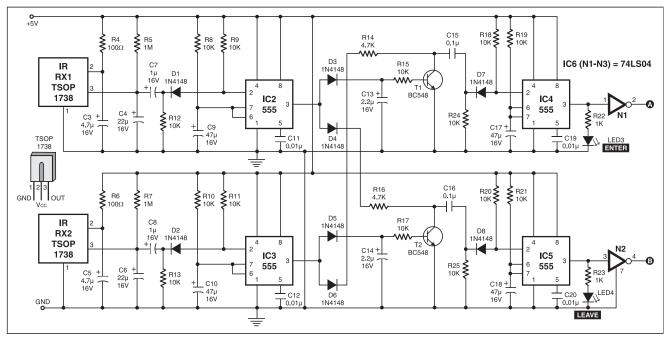


Fig. 2: Receiver (pulse generator) circuit

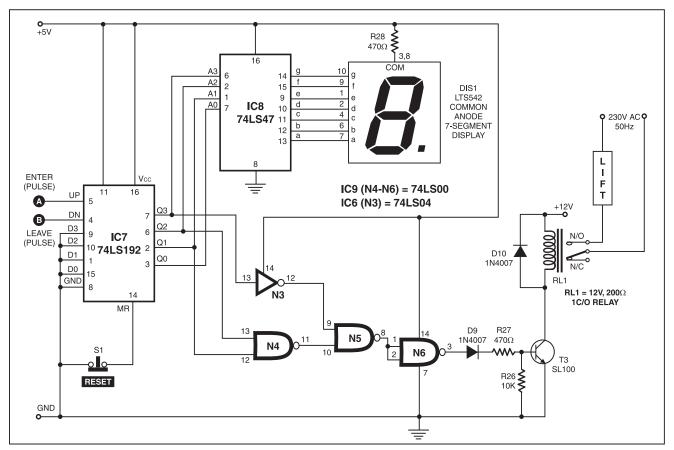


Fig. 3: Lift safety control circuit

of IC4 at its pin 3 is further given (via inverter N1) to pin 5 of IC7 for up-counting. Capacitor C14 also gets charged by timer IC3 but there is no high output across diode D4. So no pulse is available at pin 2 of IC5.

Similarly, when a person leaves the lift, timer IC3 gets triggered due to inter-

ruption of the second beam and then timer IC2 gets triggered due to interruption of the first beam. Triggering of timer IC3 charges capacitor C14 to drive transistor T2. At the same time, a high output appears across diode D4 due to triggering of timer IC2. This high output is used to trigger IC5. The high output of IC5 at its pin 3 is further given (via inverter N2) to pin 4 of IC7 for down-counting. Capacitor C13 also gets charged by timer IC2 but there is no high output across diode D6. So there is no pulse at pin 2 of IC4.

Thus, when a person enters the lift a high pulse is available at terminal A and LED3 blinks, and when a person leaves

the lift, a high pulse is available at terminal B and LED4 blinks.


3. The lift safety control section. Points A and B of the receiver circuit (Fig. 2) are connected to the corresponding points of the lift safety contol circuit (Fig. 3). The lift safety control section is built around up-/down-counter IC 74LS192 (IC7), inverter N3 and

Fig. 4: Actual-size, single-side PCB for Figs 1, 2 and 3

quad NAND gate IC74LS00 (IC9). The output of NAND gate N6 is fed to relay driver transistor T3 for activating the lift via N/O contacts of relay RL1 as shown in Fig. 3. The relay requires 12V to operate.

This circuit is designed for a lift capacity of nine persons with safety limit of five persons. When the safety

When the safety Fig. 5: Component layout of the PCB in Fig. 4

Fig. 6: Room power control

limit is crossed, i.e. the number of persons inside the room exceeds five, the lift controller is switched off. When the number of persons inside the room reduces to five, the lift control is restored as shown in Truth Table I.

The safety limit can be extended by changing the circuit's logic part (compris-

ing inverter N3 and NAND gate IC9) accordingly.

Counter IC 74LS192 is capable of both up-counting and down-counting if configured properly. When a person enters the lift the count of IC7 is incremented by one, which provides a pulse at its pin 5. When a person leaves the lift the count of IC7 is decremented by one, which provides a pulse at its pin 4. The counter counts up to 9 only. When a person enters the lift, LED3 glows, and when a person leaves, LED4 glows.

4. Display section. The display section consists of BCD-to-7-segment decoder/ driver 74LS47 (IC8) and common-anode,

TRUTH TABLE I					
Counter output of IC7 Q3 Q2 Q1			Logic output at pin 3 of N6 = $\overline{Q3}.(\overline{Q1}+\overline{Q2})$		
0	0	0	1		
0	0	0	1		
0	0	1	1		
0	0	1	1		
0	1	0	1		
0	1	0	1		
0	1	1	0		
0	1	1	0		
0	0	0	0		
1	0	0	0		

TRUTH TABLE II

Cou	inter o	utput	of IC7	Dec.	Logic output at pin 6 of N5
Q3	Q 2	Q1	Q0	Equ.	$=\overline{(\overline{Q0}.\overline{Q1}.\overline{Q2}.\overline{Q3})}$
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	1
0	0	1	1	3	1
0	1	0	0	4	1
0	1	0	1	5	1
0	1	1	0	6	1
0	1	1	1	7	1
1	0	0	0	8	1
1	0	0	1	9	1

7-segment display LTS542 (DIS1). The four BCD outputs (Q0 through Q3) of up/ down counter IC7 are fed to decoder/driver IC8. The active-low outputs of the decoder are connected to the corresponding pins of the 7-segment, common-anode display.

Construction

The circuit (excluding relay) works off a 5V regulated power supply. The actualsize, single-side PCB for the lift safety control system comprising transmitter (Fig. 1), receiver (Fig. 2) and lift control (Fig. 3) sections is shown in Fig. 4 and its component layout in Fig. 5. The combined PCB can be cut to separate the transmitter section from the rest of the PCB.

Room power control

To replace the lift control circuit (Fig. 3) with the room power control circuit (Fig. 6), simply remove the lift safety control circuit connected between points A and B of the receiver (pulse generator) circuit. Now connect points A and B of the room power control circuit to the corresponding points of the receiver circuit.

Fig. 6 shows the circuit for automatic room power control along with display. When nobody is present in the room, the light in the room is automaticallly switched off. The circuit consists of up-/downcounter 74LS192 (IC1), display driver 74LS47 (IC2), common-anode display LTS542

(DIS1), inverter (IC3) and 4-input NAND gate (IC4). The output of NAND gate N5 is conneted to relay driver transistor T1 for power control of the room via N/O contact of relay RL1. The counter (IC1) counts up to 9. The 4-bit output of IC1 is inverted and fed to the dual 4-input NAND gate (IC4). If all the four bits of IC1 (Q0 through Q3) are zero, the output of IC4 is zero. Otherwise, the output of IC4 is high (logic 1).

When the output of IC4 is high, transistor T1 conducts to energise the relay, which provides mains power supply to the room. Thus only when someone is

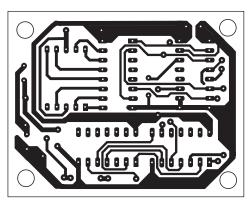


Fig. 7: Actual-size, single side PCB for automatic power control (Fig. 6)

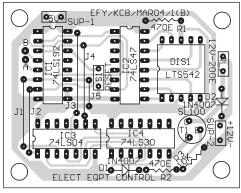


Fig. 8: Component layout for the PCB in Fig. 7

PARTS LIST	
etore	

Semiconductors:					
IC1, IC2-IC5	- NE555 timer				
IC6	- 74LS04 hex inverter				
IC7	-74LS192 up/down decade				
	counter				
IC8	-74LS47 BCD to 7-segment				
	decoder/driver				
IC9	- 74LS00 quad 2-input NAND				
	gate				
RX1, RX2	-Infrared receiver module				
	TSOP (1738)				
LED1, LED2	- Infrared transmitter LED				
LED3, LED4	- 3mm red LED				
T1, T2	- BC548 npn transistor				
T3	- SL100 npn transistor				
D1-D8	- 1N4148 diode				
D9, D10	- 1N4007 rectifier diode				
DIS1	- LTS542 common-anode dis-				
	play				
Resistors (all ¼	-watt, ±5% carbon,				
unless stated of	therwise):				
R1, R2	- 1.2-kilo-ohm				
DO DI DO	100 1				

R1, R2 R3, R4, R6 R5, R7 R8-R13, R15,	- 1.2-kilo-ohm - 100-ohm - 1-mega-ohm
R17, R18-R21 R24-R26 R14, R16 R22, R23 R27, R28	- 10-kilo-ohm - 4.7-kilo-ohm - 1-kilo-ohm - 470-ohm
$\begin{array}{c} Capacitors: \\ C1, C2, C11, \\ C12, C19, C20 \\ C3, C5 \\ C4, C6 \\ C7, C8 \\ C9, C10, C17, \\ C18 \\ C13, C14 \\ C15, C16 \end{array}$	 - 0.01µF ceramic disk - 4.7µF, 16V electrolytic - 22µF, 16V electrolytic - 1µF, 16V electrolytic - 47µF, 16V electrolytic - 2.2µF electrolytic - 0.1µF ceramic disk
Miscellaneous: Power supply Relay	 - 5V regulated DC, 12V regulated DC - 12V, 200-ohm, 1c/o relay

inside the room, the NAND gate output will be high and hence the power supply of the room will be 'on.' The logic (comprising IC3 and IC4) for maximum nine persons are summarised in Truth

Table II.

As the circuit uses IC 74LS192, it works only for rooms having a capacity of nine persons. However, it can be made to work for rooms having a capacity of 15 persons by using IC 74LS193 in place of IC 74LS192.

An actual-size, single-side PCB for the room power control circuit is shown in Fig. 7 and its component layout in Fig. 8. Points A and B marked on this PCB need to be connected to the corresponding points in the PCB shown in Fig. 5. \Box

SOUND-OPERATED ON/OFF SWITCH

PRADEEP G.

More than the sensor of the sensor of the sensor of the sensor. Since the microphone as the sensor. Since the microphone senses any sound or vibration, these remote controls may give a false response. The sound is generated by clapping or you can use your voice to activate the remote control. As the tone frequency generated through clapping or voice command is not constant, designing a tuned receiver for an ordinary clap or voice-operated switch is very difficult.

Here we've described a unique soundoperated on/off switch that responds only to a particular frequency of sound (4.5 kHz). A suitable receiver can be easily designed to receive and detect this tone. An electronic circuit is used to generate 4.5kHz audible sound. The circuit works

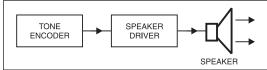


Fig. 1: Block diagram of electronic clapper

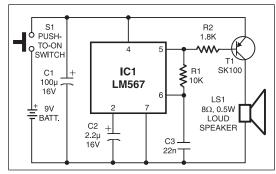


Fig. 2: Circuit of electronic clapper (sound generator)

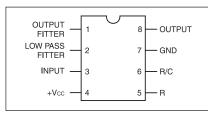


Fig. 3: Top view of IC LM567 in plastic package

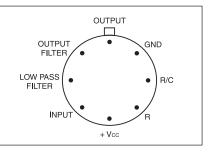


Fig. 4: Top view of IC LM567 (metal package)

with a sound generated from a distance of up to 4.6 metres (15 feet).

The circuit

The sound-operated on/off switch comprises an electronic clapper (sound

generator) and a receiver unit to activate the relay.

Electronic clapper. Fig. 1 shows the block diagram of electronic clapper (sound generator). It comprises tone generator, speaker driver and speaker sections.

The circuit of electronic clapper (Fig. 2) is built around phase-locked loop (PLL) tone decoder LM567 (IC1). The voltage-controlled oscillator (VCO) section inside IC1 is configured to generate 4.5kHz signals. A pnp transistor SK100 (T1) is used to drive an 8-ohm, 0.5-watt loudspeaker (LS1). In order to obtain identical waveshapes of the signals, both the encoder (electronic clapper) and the

decoder (receiver) must use the same IC. This is the precise reason why we've used IC LM567 in place of popular timer IC 555

	PARTS LIST
Semiconducto	ors:
IC1, IC2	- LM567 PLL tone decoder
IC3	- CD4027 dual JK flip-flop
IC4	- 7809 +9V regulator
T1	- SK100 pnp medium-power
	transistor
T2, T3	- BC549C npn signal transis-
12, 10	tor
T4	
	- BC557 pnp signal transistor
T5	- BC547 npn signal transistor
T6	- SL100 npn medium-power
	transistor
LED1	- Red LED
D1-D3	- 1N4001 rectifier diode
Resistors (all	¼-watt, ±5% carbon,
unless stated	otherwise):
R1, R3, R9, R	
R15, R17,	- 10-kilo-ohm
R2	- 1.8-kilo-ohm
R4	- 4.7-kilo-ohm
R5	- 560-kilo-ohm
R6, R16	- 2.2-kilo-ohm
R7	- 2.7-kilo-ohm
R8	- 680-ohm
R10	- 1-mega-ohm
R11	- 180-kilo-ohm
R12	- 100-kilo-ohm
R14	- 18-kilo-ohm
R18, R19,	
R20	- 1-kilo-ohm
Capacitors:	
C1, C6, C14	 100µF, 16V electrolytic 2.2µF, 16V electrolytic
C2, C10	 2.2µF, 16V electrolytic
C3, C9	 22nF ceramic disk
C4	 0.01µF ceramic disk
C5	- 56pF ceramic disk
C7, C8, C16,	•
C17	- 0.1µF ceramic disk
C11	- 4.7µF, 16V electrolytic
C12	- 1µF, 16V electrolytic
C13	- 0.22µF ceramic disk
C15	- 1000µF, 25V electrolytic
015	- 1000µF, 25V electrolytic
Miscellaneous	
Relay	- 9V, 150-ohm
S1	- Push-to-on tactile switch
LS1	- 8-ohm, 0.5W loudspeaker
Battery	- 9V
5	- IC bases
	- Condenser mic

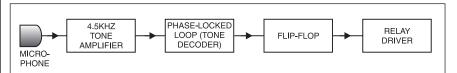
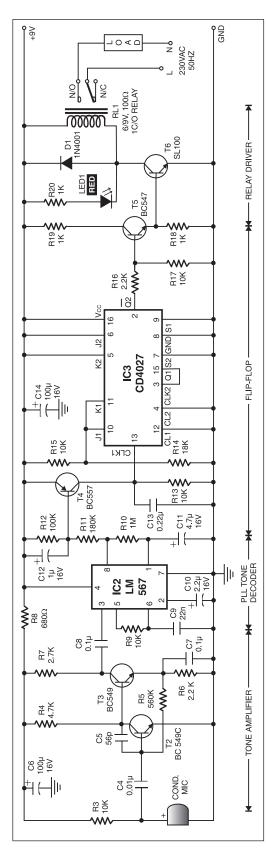



Fig. 5: Block diagram of the receiver unit

here. When you press switch S1, the elec-

tronic clapper generates 4.5kHz sound. IC LM567 is available in small plastic and metal pakages. The pin configurations of both the packages are shown in Figs

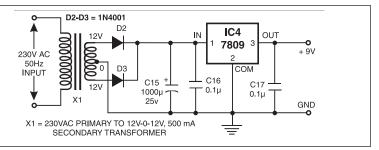


Fig. 7: Power supply circuit

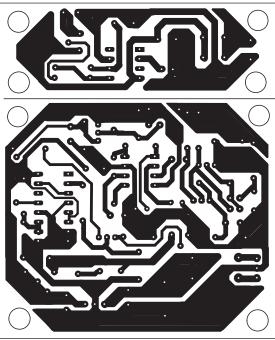


Fig. 8: Actual-size, single-side PCB for sound-operated on/off switch

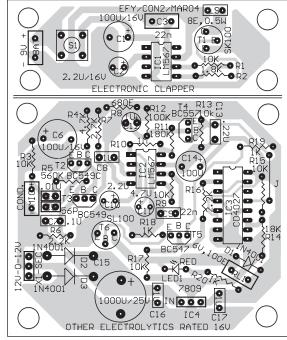


Fig. 9: Component layout for the PCB

6: Receiver circuit

ы.

3 and 4, respectively. The IC is a highly stable phase-locked loop with synchronous AM lock detection and power output circuitry. It is primarily used as a tone and frequency decoder where it is required to drive a load whenever a sustained frequency within its detection band is present at its selfbiased input. The centre frequency of the band and the output delay are independently determined by external components.

The sailent features of IC LM567 are:

1. Wide frequency range (0.01 Hz to 500 kHz)

2. Highly stable centre frequency

3. Independently controlled bandwidth

4. High outband signal and noise rejection

5. Low-voltage (5-10V) operation

6. 100mA output current sink capability

7. Inherent immunity to false

ELECTRONICS PROJECTS Vol. 25 33

signals

Receiver unit. Fig. 5 shows the block diagram of the receiver unit. It comprises condenser microphone, 4.5kHz tone amplifier, PLL (tone decoder), flip-flop and relay driver stages. Fig. 6 shows the receiver circuit.

Tone amplifier. When you press switch S1, the electronic clapper generates 4.5kHz sound. The condenser microphone in the receiver unit converts this sound into an electrical pulse, which is given to a two-stage, high-gain AF preamplifier comprising transistors T1 and T2.

PLL tone decoder. The amplified 4.5kHz signals from the tone amplifier stage are given to PLL tone decoder IC LM567 (IC2) that is tuned for centre frequency of 4.5 kHz. As a result, the output of IC2 goes low.

Flip-flop section. The high-to-low pulse from PLL tone decoder is given to the clock input of the dual JK flip-flop wired around CMOS IC CD4027 (IC3).

One of the two flip-flops inside IC3 acts as a squarewave shaper. The squarewave pulse generated by this flip-flop is coupled to the second flip-flop of the IC. This eliminates the need for an extra monostable multivibrator IC.

Relay driver. The output of the flip-flop section (IC3) is given to the relay driver, which drives the load connected to N/O contacts of the relay as shown in Fig. 6.

Power supply. Fig. 7 shows the power supply circuit for the receiver unit. The mains AC supply is stepped down by transformer X1. The output of the secondary transformer is rectified by a full-wave rectifier comprising diodes D1 and D2 and filtered by capacitor C15. The regulated 9V from regulator 7809 (IC4) powers the entire receiver circuit.

Construction

Assemble the electronic clapper and the receiver circuits on two separate

PCBs. Check all the connections thoroughly. Connect a 9V battery to the clapper circuit and 9V regulated power supply to the receiver circuit. Since IC LM567 works off a maximum of 10 volts, a 9V regulated power supply is recommended.

Now if you press switch S1 momentarily, the clapper produces a sharp audio tone to energise the relay in the receiver circuit to activate the relay/ load connected via relay contacts. To deactivate the relay, again press clapper switch S2.

An actual-size, single-side PCB for the sound-operated on/off switch comprising electronic clapper, receiver and power supply circuits is shown in Fig. 8 with its component layout in Fig. 9. The combined PCB can be cut along the double line to separate the clapper and receiver sections.

Note. ST Microelectronics CD4027 IC is recommended for momentary toggle operation in the receiver unit.

DIGITAL CLOCK USING DISCRETE ICs

A. KANNABHIRAN & R. JEYARAMAN

his digital clock can be easily constructed using readily-available ICs and components.

The block diagram of the digital clock is shown in Fig. 1. The basic 1Hz clock pulse signal is obtained from the clock pulse generator using a 4.194304MHz crystal. It is divided by 60 by the second's section to produce one clock pulse every minute, which is further divided by 60 to produce one clock pulse every hour. Both the seconds and minutes sections use divide-by-10 and divide-by-6 counters. The clock pulse from the minute's section is applied to the hour's section, which is a divide-by-12 counter to control the hour and AM/PM indication with the help of the code converter circuit and J-K flipflop. The outputs of all the counters are displayed on 7-segment displays after suitable decoding.

Fig. 2 shows the circuit diagram of digital clock with AM and PM indication. The heart of the circuit is the precision 1-second oscillator section that is built around 14-stage counters CD4060 (IC1 and IC2). The clock accuracy depends upon the 1-second oscillator, which divides the crystal frequency (4.194304 MHz) by 16,348 to output 256 Hz at pin 3 of IC1, which is further divided by 256 to output

one pulse per second at pin 14 of IC2. Resistors R1 and R2 are biasing and powerlimiting resistors, respectively.

The one-second pulse is applied to the clock input of decade counter 74LS90 (IC3), which is a 4-stage ripple counter containing a master/slave flip-flop acting as a divide-by-2 counter and three flipflops connected as a divide-by-5 counter. Clock input $\overrightarrow{CP1}$ of the divide-by-5 section must be externally connected to Q0 output of the divide-by-2 section. $\overrightarrow{CP0}$ clock input of the divide-by-2 section receives the clock signal from the oscillator output and a BCD count sequence is produced.

Q0 through Q3 outputs of the decade counter (IC3) are connected to A0 through A3 input pins of the BCD to 7-segment decoder/driver 74LS47 (IC9), respectively. IC9 accepts the 4-line input data, generates their complements internally and decodes the data with seven AND/OR gates having open-collector outputs to drive LED segments directly. The 'a' through 'f' outputs of IC 74LS47 (IC9) are connected to the corresponding inputs of 7-segment display DIS1. All the 7-segment displays work in the same fashion. Resistors R3 through R8 are used as current-limiting resistors for displays DIS6 down to DIS1, respectively. Each display comprises seven

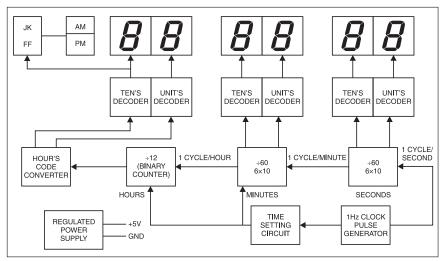


Fig. 1: Block diagram of digital clock using discrete ICs

	PARTS LIST
Semiconductors	:
IC1, IC2	- CD4060 14-stage counter/ divider and oscillator
IC3, IC5 IC4, IC6 IC7 IC8	 - 74LS90 decade counter - 74LS92 divide-by-12 counter - 74LS93 divide-by-16 counter - CD4017 5-stage Johnson
IC9-IC14	counter - 74LS47 BCD to 7-segment
IC15 IC16, IC17 IC18, IC19	decade counter/driver - 74LS76 dual JK flip-flop - 74LS04 hex inverter - 74LS08 quad two-input AND gate
IC20 IC21 I1-T4 D1 D2-D5 DIS1-DIS6	 - 74LS32 quad two-input OR gate - 7805, 5V regulator - BC548 npn transistor - 1N4148 switching diode - 1N4007 rectifier diode - LTS542 common-anode
LED1 LED2	7-segment display - Green LED - Red LED
Resistors (all ¼- unless stated oti	watt, ±5% carbon, herwise):
R1 R2 R3-R8, R16 R9-R14 R15	- 470-kilo-ohm - 1.2-kilo-ohm - 220-ohm - 2.2-kilo-ohm - 10-kilo-ohm
Capacitors: C1 C2 C3 C4	 - 22pF ceramic disk - 47pF ceramic disk - 1000μF, 25V electrolytic - 0.1μF ceramic disk
Miscellaneous:	
X _{TAL} S1-S3 X1	- 4.194304MHz - Push-to-on switch - 230V AC primary to 6V-0-6V, 300mA secondary trans- former

PARTS LIST

T

I

I

I

1

Σ

515

light-emitting diodes with their common anodes connected together. This configuration is known as the common-anode, 7segment display.

ICs 74LS90 (IC3) and 74LS92 (IC4) are cascaded to produce units' and tens' digits of the seconds' display. Decade counter IC3 is reset to start counting from 0 after ninth count. Pin 11 (Q3) of IC3 is connected to clock input pin 14 ($\overline{CP0}$) of IC4. After ninth count, Q3 output of IC3 goes from high to low and provides a clock signal to $\overline{CP0}$ (pin 14) of IC4.

IC4 contains a flip-flop acting as a divide-by-2 counter and three flip-flops connected as a divide-by-6 counter. After fifth

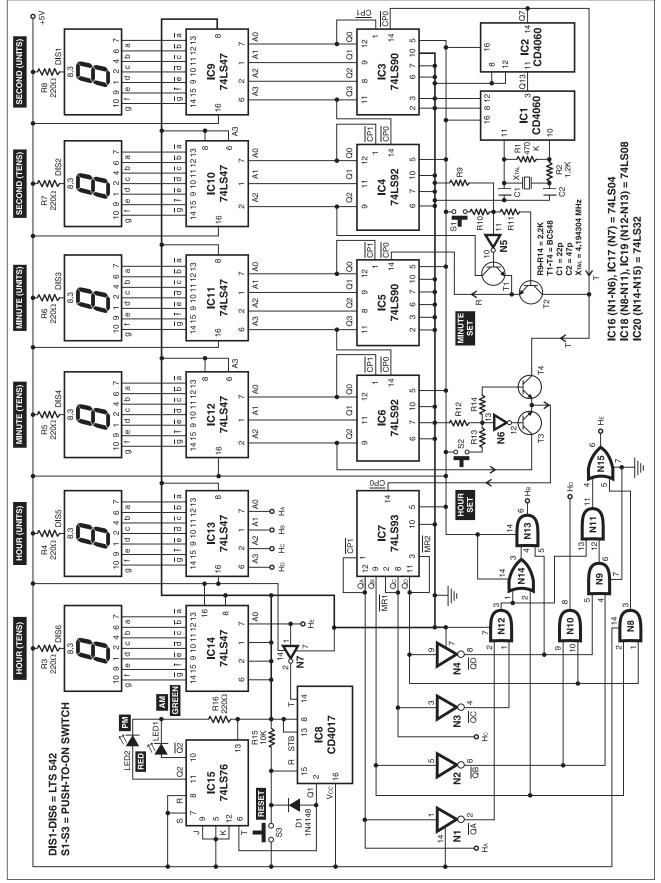


Fig. 2: Circuit diagram of digital clock using discrete ICs

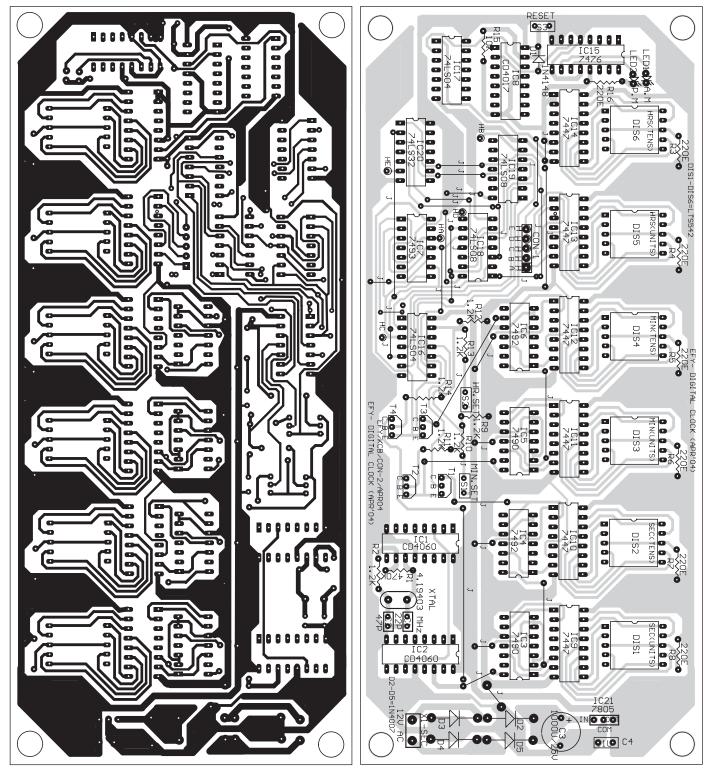
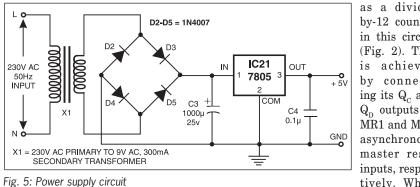


Fig. 3: Actual-size, single-side PCB for the digital clock using discrete ICs

count, Q2 output of IC4 goes from high to low and IC4 starts counting from 0.


The next clock pulse resets the seconds section after it counts up to 59 seconds and provides a clock pulse to the minutes section. IC5 and IC6 are used for generation of units' and tens' digits of

the minutes' display with the help of IC11 and IC12, respectively. Q2 output of IC4 is connected to the clock input (CP0) of IC5 through transistor T1. Resistor R9 is pulled low and the high output of inverter N5 provides forward bias to transistor T1. Q2 output of IC4 is available at pin

Fig. 4: Component layout for the PCB

14 of IC5 through the low-resistance path of transistor T1. The emitters of both transistors T1 and T2 are connected to pin 14 of IC5.

Switch S1 is used for setting the minutes time. When switch S1 is pressed, transistor T1 is reverse biased and transis-

as a divideby-12 counter in this circuit (Fig. 2). This is achieved by connecting its Q_c and $Q_{\rm D}$ outputs to MR1 and MR2 asynchronous master reset inputs, respectively. When

Binary Input Conversion into 5-bit Code										
Bina	Binary input to code converter Converted output from code converter Display									
Q _D	\mathbf{Q}_{c}	\mathbf{Q}_{B}	\mathbf{Q}_{A}	$\mathbf{H}_{\mathbf{E}}$	H _D	\mathbf{H}_{c}	$\mathbf{H}_{_{\mathrm{B}}}$	$\mathbf{H}_{_{\!\!A}}$	Hrs. (Tens)	Hrs. (Units)
0	0	0	1	0	0	0	0	1	0	1
0	0	1	0	0	0	0	1	0	0	2
0	0	1	1	0	0	0	1	1	0	3
0	1	0	0	0	0	1	0	0	0	4
0	1	0	1	0	0	1	0	1	0	5
0	1	1	0	0	0	1	1	0	0	6
0	1	1	1	0	0	1	1	1	0	7
1	0	0	0	0	1	0	0	0	0	8
1	0	0	1	0	1	0	0	1	0	9
1	0	1	0	1	0	0	0	0	1	0
1	0	1	1	1	0	0	0	1	1	1
0	0	0	0	1	0	0	1	0	1	2

tor T2 is forward biased. Forward-biased transistor T2 provides a low-resistance path for 1Hz clock signal and, at the same time, transistor T1 blocks the signal from Q2 output of IC4.

The minutes section works the same way as the seconds section. After 59th count, the next clock pulse resets the minutes section and provides a clock pulse (through transistor T3) to clock input pin 14 of IC 74LS93 (IC7) of the hours section.

IC 74LS93 is a 4-bit binary counter that consists of four master/slave flipflops which are internally connected as a divide-by-2 counter section and a divideby-8 counter section. Each section has a separate clock input, which initiates counting on receiving a high-to-low clock pulse. Q_{A} output of the divide-by-2 section must be externally connected to $\overline{CP1}$ (pin 1) clock input of the divide-by-8 counter section. The input count pulse is applied to $\overline{CP0}$ (pin 14) clock input of the divideby-2 counter section. This configuration acts as a divide-by-16 counter in normal condition.

Binary counter 74LS93 (IC7) is used

both Q_{c} and Q_{p} outputs become 1, the counter is reset to 0000 and as a divideby-12 counter. It counts the clock pulse and gives the binary output from 0000 to 1011.

The outputs of IC7 are given to the code converter section. The code converter section converts the 4-bit binary input $(Q_A \text{ through } Q_D)$ into 5-bit code $(H_A \text{ through } H_E)$ as shown in the table. For inputs from 0001 through 1001, it produces the same outputs. But when inputs are 1010, 1011 and 0000, the code converter section converts these into 10000, 10001 and 10010, respectively. The code-converter circuit comprises NOT gates N1 through N4, AND gates N8 through N13 and OR gates N14 and N15. H_{A} through H_{F} outputs of the code converter are simplified by using Karnaugh map as follows:

$$\begin{array}{l} H_{A} = Q_{A} \\ H_{B} = \overline{Q_{D}}, (Q_{B} + \overline{Q_{A}} \cdot \overline{Q_{C}}) \\ H_{C} = Q_{C} \\ H_{D} = Q_{D} \cdot \overline{Q_{B}} \\ H_{E} = Q_{D} \cdot Q_{B} + \overline{Q_{A}} \cdot \overline{Q_{B}} \cdot \overline{Q_{C}} \cdot \overline{Q_{D}} \\ H_{H} \text{ through } H_{H} \text{ outputs of the } c \end{array}$$

through H_D outputs of the code converter are connected to 7-segment decoder 74LS47 (IC13) to display the units' digit of hour and H_{E} is connected to IC14 to display the tens' digit of hour. After ninth count, tens' digit of the hour display becomes '1' (H $_{\rm E}$ goes high) and units' digit resets to '0.' To display 01.00.00 after 12:59:59, the code converter circuit resets the tens' digit to '0' and the units' digit to '1'.

Edge-trigger flip-flop 74LS76 (IC15) is used for AM and PM indications in conjunction with CD4017 (IC8). $H_{\rm p}$ output of the code converter controls the AM/PM display. It is connected to clock input pin 14 of IC8 via NOT gate N7.

Every twelve hours, H_{E} output goes from high to low. The high clock input of IC8 takes its output pin 2 (Q1) high, which, in turn, triggers the flip-flop and resets IC8 via diode D1.

Initially, $\overline{\text{Q2}}$ output of IC15 is high as Q2 output is low. Thus AM LED1 (green) is on. After twelve hours, the first clock pulse turns Q2 high and its complement $\overline{Q2}$ goes low. As a result, PM LED2 (red) glows.

Again after twelve hours, H_E output of the code converter goes from high to low and gives another clock pulse to the flipflop with help of CD4017. Now Q2 output goes low and its complement $\overline{Q2}$ becomes high. Thus AM LED glows.

Push-to-on switches S1 and S2 are used to manually set minute and hour, respectively. The 1Hz clock from the output of IC2 is used to advance the minutes counters (IC5 and IC6) or the hours counter (IC7) at a fast rate by pressing switch S1 (of the minutes' set) or switch S2 (of the hours' set). Switch S3 is used for initial resetting of IC8.

The power supply circuit is shown in Fig. 5. The AC mains supply is stepped down by transformer X1 to deliver a secondery output of 9V AC, 300 mA. The output of the transformer is rectified by a full-wave rectifier comprising diodes D2 through D5. Capacitor C3 acts as a filter to eliminate ripple. Regulator 7805 (IC21) provides regulated 5V power supply to the digital clock circuit.

An actual-size, single-side PCB for the digital clock is shown in Fig. 3 and its component layout in Fig. 4. H_A through H_E inputs of ICs 13 and 14 have been terminated on Con-1 and suitably marked on the PCB. These pins are to be connected to code converter outputs with identical marking and terminated on pads using jumpers.

A BIDIRECTIONAL VISITORS COUNTER

MILIND GUPTA

This counter can be used to know the number of visitors present in a room at any given time. It is useful for places such as movie halls, buildings and offices. To keep the cost low, it uses a simple calculator instead of a counter-and-display circuit. The calculator can be used as a normal calculator any time by plugging it off from the circuit. All the components are readily available in the market and the circuit is easy to build.

Circuit description

Two transmitter-receiver pairs are used at the passage: One pair comprising light source A (transmitter) and lightdependent resistor LDR1 (receiver) is installed at entry side of the passage, while the other pair comprising light source B (transmitter) and LDR2 (receiver) is installed at exit side of the passage. Light from the two light sources (torches) should continuously fall on the respective lightdependent resistors (LDRs), so proper orientation of light beams and LDRs is essential. Fig. 1 shows the transmitterreceiver set-up at the entrance-cum-exit of the passage.

Fig. 2 shows the circuit of the bidirectional visitors counter, wherein sections A and B are light-detection circuits. The logic control circuit is built around AND gate IC3, NOR gate IC4 and flip-flops IC5 and IC6. The time delay circuit comprises timers IC11 and IC12. Optocouplers IC7

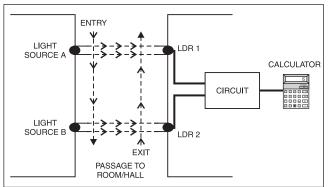


Fig. 1: Light beam set-up at the entrance-cum-exit of the passage

through IC10 are used to isolate the calculator from the circuit voltage.

The power supply circuit is shown between sections A and B in Fig. 2. The mains AC supply is stepped down by transformer X1 to 12V AC and the same is rectified by a bridge rectifier comprising diodes D1 through D4 and then filtered by capacitor C1. The regulated 9V from regulator IC 7809 (IC1) powers the entire circuit.

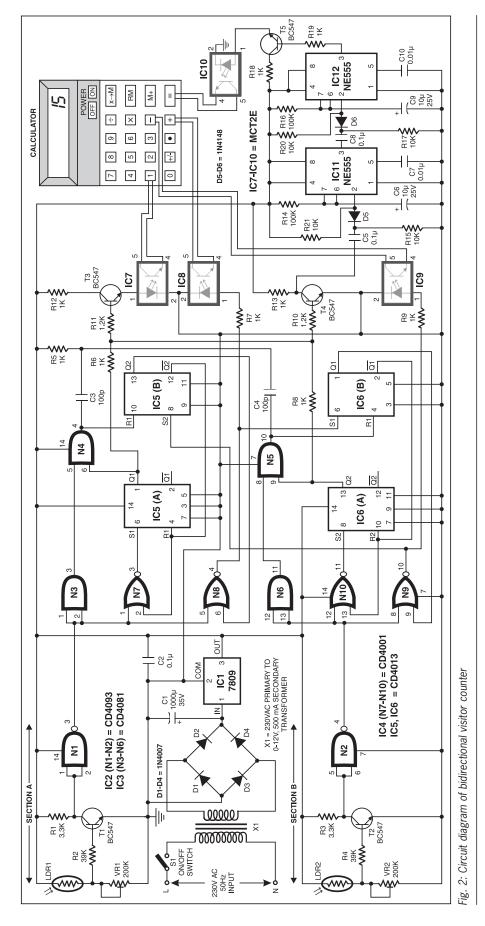
Working

Initially, when the power is switched on, flip-flops IC5 and IC6 are in reset state because of power-on-reset components comprising resistor R5 and capacitors C3 and C4. Thus transistors T3 and T4 are initially in cut-off state. At the same time, transistor T5 also is in cut-off state. In brief, when power is switched on, all the terminal keys including '1', '+', '-' and '=' of the calculator remain open.

The two similar sections A (comprising LDR1, transistor T1 and NAND gate N1) and B (comprising LDR2, transistor T2 and NAND gate N2) detect the interruption of light and then generate clocks at pin 3 of NAND gate N1 and pin 4 of NAND gate N2, respectively.

When nobody is passing through the passage, light falls on both LDR1 and LDR2, which thus have low resistance. Since the resistance of LDR1 is low, transistor T1 conducts and the voltage at its

collector is low. This low voltage is fed to NAND gate N1, which gives a high output at its pin 3. As the outputs of NOR gates N7 and N8 are low, the LED inside optocoupler IC8 is in 'off' state and the positive terminals (+) of the calculator remain open. Similarly, the resistance of LDR2


	PARTS LIST
Semiconduct	
IC1	- 7809, 9V regulator
IC2	- CD4093 quad 2-input
	Schmitt trigger
IC3	- CD4081 quad 2-input AND
	gate
IC4	- CD4001 quad 2-input NOR
	gate
IC5, IC6	- CD4013 dual D flip-flop
IC7-IC10 IC11, IC12	- MCT2E optocoupler - NE555 timer
T1-T5	- BC547 npn transistor
D1-D4	- 1N4007 rectifier diode
D1-D4 D5, D6	- 1N4148 switching diode
<i>'</i>	0
	$\frac{1}{4}$ -watt, $\pm 5\%$ carbon,
unless stated	
,	- 3.3-kilo-ohm
R2, R4	
R5-R9, R12,	K13,
R18, R19 R10, R11	- 1-kilo-ohm - 1.2-kilo-ohm
R10, R11 R14, R16	- 1.2-kilo-ohm - 100-kilo-ohm
R14, R10 R15, R17,	- 100-KII0-0IIII
	- 10-kilo-ohm
	- 200-kilo-ohm preset
	- Light-dependent resistor
'	
Capacitors: C1	- 1000µF, 35V electrolytic
C_{2}, C_{5}, C_{8}	- 0.1µF ceramic disk
C2, C5, C6 C3, C4	- 100pF ceramic disk
C6, C9	- 10µF, 25V electrolytic
C7, C10	- 0.01µF ceramic disk
Miscellaneou	•
S1	- On/Off switch
X1	- 230V AC primary to 0-12V,
111	300/500 mA secondary trans-
	former
	IOTITICI

- Calculator

- Light sources (2 torches)

is also low, transistor T2 conducts and the voltage at its collector is low. This low voltage is further given to NAND gate N2, which gives a high output at its pin 4. As the outputs of NOR gates N9 and N10 are low, the LED inside optocoupler IC9 is in 'off state and the negative key (–) of the calculator remains open.

Now if somebody enters the passage (to room/hall), first light A is interrupted and then light B. When light A is interrupted, the resistance of LDR1 increases to provide a low output at pin 3 of NAND gate N1. This low voltage is fed to AND gate N3 and NOR gates N7 and N8. Since pin 6 of NOR gate N8 is low, the output of

N8 goes high, setting Q1 output (pin 1) of IC6(B) to high state. Simultaneously, IC8 activates and its internal transistor shorts the '+' key of the calculator.

When the person moves further to interrupt light B, the resistance of LDR2 increases to provide a low output at pin 4 of NAND gate N2. Since IC6(B) is in set condition and pin 13 of NOR gate N10 is low, its output goes high. This, in turn, sets IC6(A) and its Q2 output (pin 13) is driven high. As a result, transistor T3 conducts to activate IC7 and its internal transistor shorts terminals of key '1' of the calculator. The high output of IC6(A) also triggers monostable IC11 via transistor T4, capacitor C5 and diode D5, which, in turn, triggers monostable IC12 after approximately one second. The output of IC12 activates IC10 via transistor T5 and its internal transistor shorts the terminals of the '=' key of the calculator. Thus the '=' key of the calculator shorts about one second after the '1' key shorts.

The output of AND gate N5 is still low because its pin 8 is at low level due to obstruction of light B. As the person moves past light source B, light again falls on LDR2 and the output of N5 goes high. This resets flip-flop IC6(B) to make its $\overline{Q1}$ output (pin 2) high, which, in turn, resets flip flop IC6(A) to make its Q2 output (pin 13) low and hence the output of AND gate N5 again goes low. As a result, transistors T3 and T4 stop conducting and keys '1' and '=' of the calculator get open. Thus the circuit returns to its original state after shorting the '+,' '1' and '=' keys of the calculator and it is ready for another count.

The above explanation can be summarised as follows: When light falling on LDR1 is interrupted first, followed by light falling on LDR2, the calculator keys '+,' '1' and '=' are automatically shorted consecutively. This adds '1' to the total on the calculator, indicating that a person is entering, and upcounting takes place.

Similarly, when somebody exits, first light B is interrupted and then light A. When light B is interrupted, the resistance of LDR2 increases to provide a low output at pin 4 of NAND gate N2. This low voltage is fed to AND gate N6 and NOR gates N9 and N10. Since pin 9 of NOR gate N9 is initially low, its output goes high to set IC5(B). Simultaneously, IC9 activates and its internal transistor shorts the '--' terminals of the calculator.

Now as the person crosses light B to interrupt light A, the resistance of LDR1 increases to provide a low output at pin 3

of NAND gate N1. Since IC5(B) is in 'set' condition and pin 2 of NOR gate N7 is low, its output goes high. This, in turn, sets IC5(A) and its Q1 (pin 1) is driven high. As a result, transistor T3 conducts to activate IC7 and its internal transistor shorts the terminals of '1' key of the calculator. The high output of IC5(A) also triggers monostable IC11 via transistor T4, capacitor C5 and diode D5, which, in turn, triggers monostable IC12 after a delay of approximately one second. The output of IC12 activates IC10 via transistor T5 and its internal transistor shorts the terminals of the '=' key of the calculator. Thus the '=' key of the calculator shorts about one second after the '1' key shorts.

The output of AND gate N4 is still low because its pin 5 is low due to obstruction of light A. As the person moves past light beam A, light again falls on LDR1 and the output of AND gate N4 goes high. This resets flip-flop IC5(B) and its $\overline{Q2}$ output (pin 12) goes high, which, in turn, resets flip-flop IC5(A) to make its Q1 output (pin 1) low and hence the output of AND gate N4 again goes low. As a result, transistors T3 and T4 stop conducting and keys '1' and '=' of the calculator become open. Thus the circuit returns to its original state after shorting the '-,' '1' and '=' keys of the calculator and it is ready for another count.

In brief, when light falling on LDR2 is interrupted first followed by light falling on LDR1, the calculator keys '-,' '1' and '=' are automatically shorted consecutively. This substracts 1 from the total on the calculator, indicating that a person is exiting, and downcounting takes place.

The total number of persons present in the room/hall, at any time, can be seen on the display of the calculator.

Construction

An actual-size, single-side PCB for the bidirectional visitor counter, including the power supply (Fig. 2), is shown in Fig. 3 and its component layout in Fig. 4. This circuit can also be assembled on any general-purpose PCB if you don't have the PCB shown in Fig. 3.

Once the circuit has been soldered, connect the calculator. You can use any simple calculator and connecting it to the circuit does not harm it. If you use jumper plugs attached to the calculator for connection to the circuit, you can plug off the calculator from the circuit at any time and use it as a general

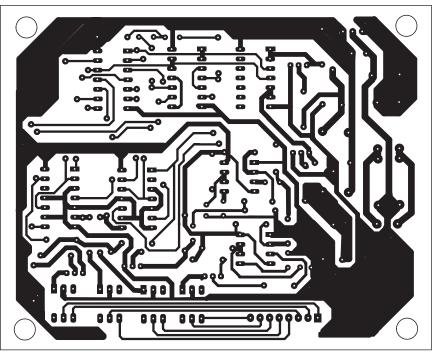


Fig. 3: Actual-size, single-side PCB for bidirectional visitor counter

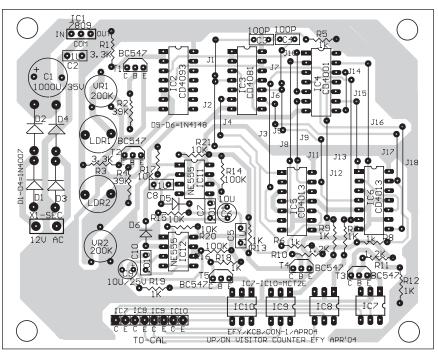


Fig. 4: Component layout for the PCB

calculator.

To make the connections, open the calculator and solder fine wires on the two contacts beneath the '1', '=', '-' and '+' keys each. Make a hole on the back side of the calculator case to allow the wires to come out. Close the calculator after putting back the contact pads and the keys. Now switch on the calculator.

Use a digital multimeter to measure

the DC voltage across the wires coming from the '1' key and identify their polarity. Now connect the negative-polarity wire to emitter pin 4 of optocoupler IC7 and the positive-polarity wire to its collector pin 5. Similarly, find out the polarities of wires connected to the '+', '-' and '=' keys and connect them to optocouplers IC8, IC9 and IC10, respectively. The circuit is now ready for use. As shown in Fig. 1, mount the assembled system on the entrance-cum-exit of the passage to the room/hall where visitors are to be monitored. Use a 9V battery for back-up.

Testing

To test the circuit, expose both the LDRs to light sources of the same intensities. Switch on power to the circuit and measure the voltage at the collector of transistor T1 with respect to ground. If the voltage is more than 5V, set it to approximately one volt (or less) by adjusting preset VR1. Now obstruct light and measure the voltage again. If the voltage is below 5V, adjust it to more than 5V using VR1.

For 200-kilo-ohm VR1, the resistance of the LDR in no-light condition should be higher than 100k and under light, it should be as low as 10k or so. Otherwise, change the value of VR1 accordingly.

Readers' comments

Q1. we are getting continuous pulses on the calculator but except '0,' nothing is being displayed on the calculator. Section A of the circuit is responding to the obstructions in the path of the laser beam but section B is not responding. Why so?

> Praveen Chowdhary Through e-mail

Now calibrate transistor T2 as explained above. Once the adjustments are completed, switch off power to the circuit and again switch it on after 5 to 10 seconds. Now switch on the calculator and press the AC (all clear) button on it. The display will show '0'.

Momentarily obstruct light A followed by light B. Once the path for light B is clear, the calculator display should show '1.' On repeating the procedure, '1' is added to display '2,' indicating that two people have entered. In the same manner, the displayed figure will increase by '1' for every obstruction of lights A followed by light B. This indicates that up-counter is working well.

For testing down-counting, press the AC (all clear) button on the calculator. The display will show '0'. Now momentarily obstruct light B followed by light A. Once the path for light A is clear, the calculator will display '-1'. On repeating the procedure, '1' is substracted from the existing total

The author, Milind Gupta, replies:

A1. Sections A and B are exactly the same. So the problem could be that your light-dependent resistor (LDR) is not giving enough change in resistance due to the obstruction. You can check the voltage at the LDR by varying preset VR2 (200k) and see whether the change is big enough to cause switching in the transistor. If not, replace LDR2.

As regards pulses in the calculator,

(-1) to display '-2', indicating that two persons have exited. In the same manner, the displayed figure will decrement by '1' for every obstruction of lights B and A in that order. This indicates that the downcounter is working well.

If the counter is not working properly, check the soldering for any loose connection. Check the connections to the calculator by manually shorting the wires of the calculator.

Precautions

To make sure that ambient light doesn't fall on the LDRs, house the LDRs in black tubes pointing towards the light sources.

The ICs should be soldered carefully. It is better to use IC bases and plug-in the ICs later. The solder to the IC pins should not be dry or loose.

To solder wires to the calculator, use a fine soldering tip. $\hfill\square$

do you mean to say that you are getting continuous pulses without any light obstruction? If yes, one of your 555 ICs might be wired as an astable rather than a monostable, i.e., pins 2 and 6 are shorting. If you are getting appropriate pulses but no increment in the calculator, it's the problem of the calculator. You should have selected a calculator that accepts the key input as described.

PROGRAMMER FOR 89C51/89C52/ 89C2051 MICROCONTROLLERS

S. ANANTHI, K. PADMANABHAN, P. ARVIND KUMAR, M. SHYAM, M. SHAKTIVEL

The 8051 family of microcontrollers, initially introduced by Intel, are now offered by a host of manufacturers such as Atmel, Philips and Dallas. Atmel 89C51, 89C52 and 89C2051 microcontrollers happen to be the workhorses today. These microcontrollers contain internal flash memory (EEPROM), which makes it possible to store the program internally inside the chip. For developing any application using these microcontrollers, one needs to have access to a programmer board.

P1.0 [1 40 P1.1 [2 39]	
P1.2 I 3 38 P1.3 I 4 37 P1.4 I 5 36 P1.5 I 6 35 P1.6 I 7 34 P1.7 8 33 RST 9 32 (RXD) P3.0 I 10 31 (TXD) P3.1 I 11 30 (INTO) P3.2 I 2 29 (INTT) P3.3 I 3 28 (T0) P3.4 I 14 27 (T1) P3.5 I 15 26 (WR) P3.6 I 6 25 (RD) P3.7 I 7 24 XTAL2 I 18 23 XTAL1 I 9 22 GND 2 20 21	□ P0.0 (AD0) □ P0.1 (AD1) □ P0.2 (AD2) □ P0.3 (AD3) □ P0.4 (AD4) □ P0.7 (AD5) □ P0.7 (AD7) □ EA/VPP □ ALE/PROG □ P2EN □ P2.7 (A15) □ P2.4 (A12) □ P2.2 (A10) □ P2.1 (A9) □ P2.0 (A8)

Fig. 1: Pin assignments for 89C51/52

F	PDI	P/SOIC	· ·
			1
RST/VPP	1	20	□ vcc
(RXD) P3.0 🗆	2	19	🗆 P1.7
(TXD) P3.1 🗆	3	18	🗆 P1.6
XTAL2 🗆	4	17	🗆 P1.5
XTAL1 🗆	5	16	🗆 P1.4
(INT0) P3.2	6	15	🗆 P1.3
(INT1) P3.3 🗆	7	14	🗆 P1.2
(TO) P3.4 🗆	8	13	🗅 P1.1 (AIN1)
(T1) P3.5 🗆	9	12	D P1.0 (AIN0)
GND 🗆	10	11	🗆 P3.7
			J
	RST/VPP ((RXD) P3.0 ((TXD) P3.1 (XTAL2 (XTAL1 ((INT0) P3.2 ((INT1) P3.3 ((TO) P3.4 ((T1) P3.5 (RST/VPP [1 (RXD) P3.0 [2 (TXD) P3.1 [3 XTAL2 [4 XTAL1 [5 (INT0) P3.2 [6 (INT1) P3.3 [7 (TO) P3.4 [8 (T1) P3.5 [9	(RXD) P3.0 □ 2 19 (TXD) P3.1 □ 3 18 XTAL2 □ 4 17 XTAL1 □ 5 16 (INT0) P3.2 □ 6 15 (INT1) P3.3 □ 7 14 (TO) P3.4 □ 8 13 (T1) P3.5 □ 9 12

Fig. 2: Pin assignments for 89C2051

Here is a simple programmer circuit that can be used to program 89C51, 89C52 and 89C2051 microcontrollers (refer Figs. 1 and 2 for their pin assignments). The fancy here is that the programmer itself deploys an 89C51 chip containing the necessary firmware.

Operational modes

The programmer can operate in any of the following two modes:

- 1. Direct keyboard-entry mode
- 2. Serial-port interface mode

Direct keyboard-entry mode. In this mode, the programmer is connected to an IBM PC keyboard. The program data is entered byte by byte and the same gets programmed into the microcontroller which is inserted into the appropriate ZIF socket on the programmer board. The bitwise contents of any given location of an already programmed microcontroller can also be read and displayed on an 8-LED display provided on the programmer. There is also a provision for erasing the contents of an already programmed device. This mode is useful for developing simple applications by users who do not have ready access to a PC and want the code to be manually entered without the hassle of a computer.

Serial-port interface mode. The

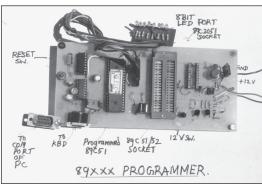


Fig. 3: Authors' working model of programming board

	PARTS LIST
Semiconductors	:
IC1 IC2	- 89C51 microcontroller - MAX232 RS-232 level
IC3 IC4 T1, T2 T3 T4 D1 ZD1 LED1-LED8 LED9 LED9 LED10	converter - 74LS04 hex inverter - 7805 +5V regulator - BC548 npn transistor - 2N2907 pnp transistor - BC557 pnp transistor - 1N4148 switching diode - 5V zener diode - Red LED - Yellow LED - Green LED
Resistors (all ¼ unless stated of	-watt, ±5% carbon, herwise):
R1, R5, R8, R9 R2-R4, R6, R12 R7 R10 R11 RNW1 RNW2	
Capacitors: C1 C2 - C5 C6- C9 C10 Miscellaneous:	 1μF, 16V electrolytic 22μF, 16V electrolytic 22pF ceramic disk 0.1μF ceramic disk
$\begin{array}{l} \underset{X_{\text{TAL1}}{\text{X}_{\text{TAL2}}}\\ \text{S1, S2}\\ \text{ZIF Socket 1}\\ \text{ZIF Socket 2} \end{array}$	- 3.57MHz Crystal - 12MHz Crystal - Push-to-on switch - 40-pin ZIF socket - 20-pin ZIF socket - 9-pin 'D' connector - 5-pin keyboard connector

programming board can be connected to Com port of a PC, using a 3-wire cable, terminating on a 9-pin D connector on the board. A simple serial port program run on the PC starts the dialogue and you can program an 89C51, 89C52 or 89C2051 microcontroller in this programming mode by using program data in an ASCII file on the PC as well as byte-by-byte from the PC's keyboard. The locking of the entered code in the micro-

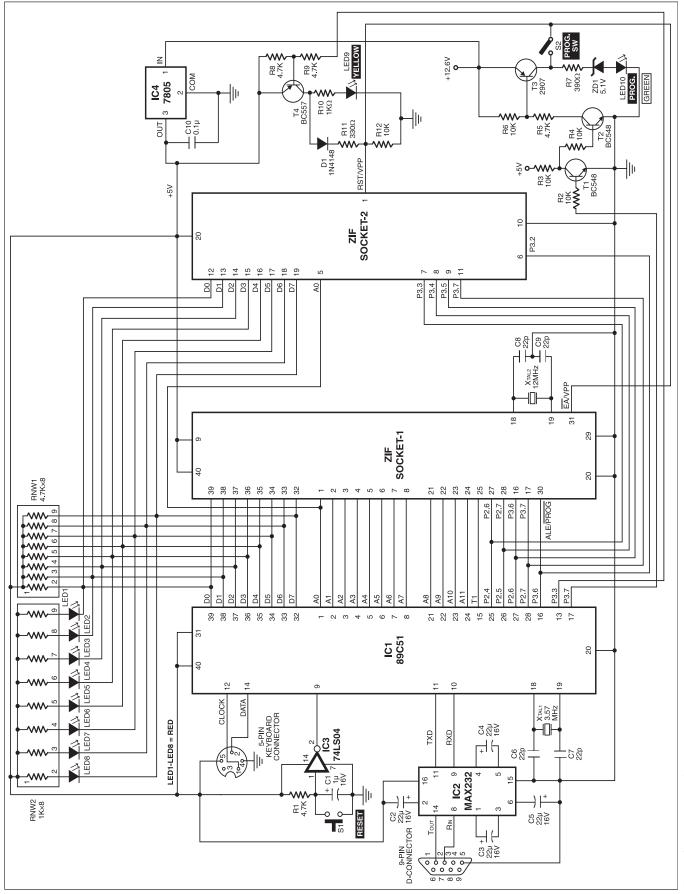


Fig. 4: Circuit diagram of the programming board



Fig. 5: Interface circuit between an 89C51 microcontroller and LCD module

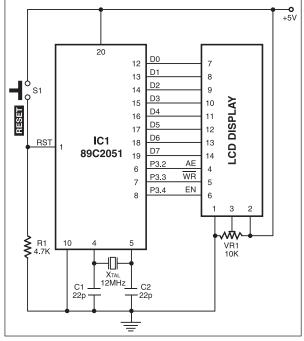


Fig. 6: Interface circuit between an 89C2051 microcontroller and LCD module

controller is also feasible.

Circuit description

Figs 3 and 4 show the authors' working model and the schematic circuit diagram of the programmer board, respectively. In Fig. 4, microcontroller 89C51 (IC1) is preprogrammed for programming other microcontrollers inserted into the appro-

priate ZIF socket on the right-either into a 40pin or a 20-pin IC to the socket at a time. The 40pin ZIF socket-1 and 20pin ZIF socket-2 are used for inserting an 89C51 (or 89C52) and 89C2051, respectively. IC MAX232 (IC2) is the voltage level converter, which converts TTL-level signals into RS-232C compatible signals and vice-versa. The power-on-reset signal is generated by R1-C1 combination in conjunction with NOT gate 74LS04 (IC3), which provides a high-going reset pulse to pin 9 of IC1. Manual resetting is also possible by shorting capacitor C1 momentarily using pushto-on tactile switch S1.

Port 0 of IC1 serves as the data bus for the IC to be programmed via ZIF socket-1 or ZIF socket-2. This port needs pull-up resistors. Therefore pin numbers 39 down to 32 of port 0 are pulled up to +5V through a $(4.7k\times8)$ resistor network RNW-1. These pins are also connected to LED1 to LED8 via current-limiting resistors (1k×8) of RNW-2. Thus, port-0 data can be viewed on these eight LEDs as complement of the actual data, at a specific memory location. A $3.57~\mathrm{MHz}~\mathrm{crystal}~(\mathrm{X}_{_{\mathrm{TAL1}}})$ is connected to pins 18 and 19 of IC1, which provides a low baud rate of 1200 for this application. However, a 12MHz crystal (X_{TAL2}) is used for the 89C51/52

IC (being programmed) in ZIF socket-1, to meet its internal timing requirements.

The address bus, data bus and control signals are required for programming a new microcontroller IC. Port 0 and Port 1 pins of IC1 provide 8-bit data bus and eight low-order address lines (A0 through A7), respectively. Four higher-order address lines (A8 through A11) are taken from pins 21 through 24 of port 2 (P2.0

through P2.3). To get A12 address line needed for the 89C52 higher memory IC, pin P3.5 (pin 15) is connceted to pin 25 of ZIF socket-1.

Pins 25 through 28 of IC1 (P2.4 through P2.7) are used for program control functions for the new IC (to be programmed in ZIF socket-1 or ZIF socket-2). The program control signals are given in Table.

When the programming (write) mode is invoked, control pin P2.4 is at logic 0, while pins P2.5 through P2.7 of IC1 are at logic 1 (0111H). During programming mode, the data received from the serial port is routed through the accumulator to the port pins 39 down to 32 of IC1 and hence given to the data pins of the sockets. Data lines D0 through D7 of IC1 are connected to pins 39 down to 32 of the ZIF socket-1 and to pins 19 down to 12 of ZIF socket-2. Pin 30 (\overline{PROG}) of ZIF socket-1 or pin 6 (INT0) of ZIF socket-2 is required to be pulsed low for about 100 microseconds during the programming operation. Also, $V_{_{\rm PP}}$ pin 31 of ZIF socket-1 or $V_{_{\rm PP}}$ pin-1 of ZIF socket-2 gets a pulsed 12V supply a few microseconds before the \overline{PROG} pin goes low, which lasts for 2 milliseconds (ms) after PROG pin goes high again. This timing is needed by the internal logic of the microcontroller to keep the voltage applied to the oxide gate of the memory for suitable duration, thereby writing into the flash memory by turning a 1 into 0. (Erasing does the opposite of turning a 0 into a 1 bit). The memory bits, after being programmed, will remain non volatile, until the same is erased, which can be done only totally for the entire chip's flash memory.

However, the entire flash memory (and not any one location individually) can be erased by using a proper combination (1000H) of control signals via pins P2.4 through P2.7 by holding PROG pin low for about 10 ms, with 12V applied to $V_{\rm PP}$ pin.

For reading of the signature byte by IC1, control pins P2.4 through P2.7 are at logic 0 (0000H). The signature is present at address 30H of 89C51 (or 89C52) and address 00H of 89C2051 microcontroller.

Transistors T1 through T3 are used for generating the pulsed 12V supply using pins 13 (P3.3) and 17 (P3.7) of IC1. When pin 17 (P3.7) goes low, npn transistor T1 is cut off and its collector voltage rises to drive npn transistor T2 into conduction. As a result the base of pnp transistor T3 goes low, thereby transistor T3 conducts and its collector voltage rises to around

ELECTRONICS PROJECTS Vol. 25 45

TABLE Flash Programming Modes									
Mode	RST	PSEN	ALE/PROG	EA/V _{PP}	P2.6	P2.7	P3.6	P3.7	
Write code data	Н	L	\langle	H/12V	L	Η	Η	Η	
Read code data	Η	L	Н	Η	L	L	Η	Η	
Bit-1	Η	L	\sim	H/12V	Η	Η	Η	Η	
Write lock Bit-2	Η	L	\sim	H/12V	Η	Η	L	L	
Bit-3	Н	L	\sim	H/12V	Η	L	Η	L	
Chip erase	Н	L		H/12V	Η	L	L	L	
Read signature byte	Η	L	Н	Η	L	L	L	L	

Note. 1. Chip erase requires a 10ms PROG pulse.

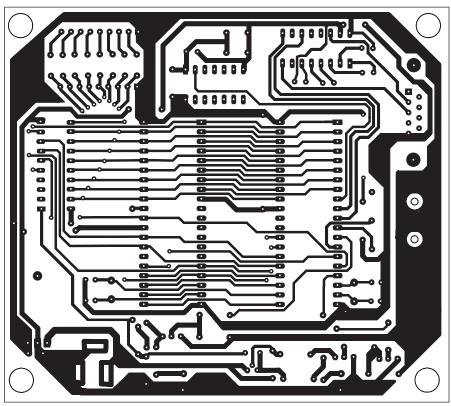


Fig. 7: Actual-size, single-side PCB for the programming board

12V. The collector of transistor T3 is connected to $V_{\rm pp}$ pins of the ZIF sockets 1 and 2. A green LED (LED10) connected to the collector of transistor T3 via current-limiting resistor R7 and zener diode ZD1 lights up to provide a visual indication of the programming voltage.

A voltage of 5V initially and 12V during erasing/programming is applied to $V_{\rm pp}$ pin of the microcontroller IC to be programmed. The availability of 5V at $V_{\rm pp}$ pins of ZIF sockets in absence of programming/erasing pulse period is ensured by circuitry around Transistor T4, in conjunction with pin 13 (P3.3) of IC1. When pin 13 goes low, transistor T4 conducts to provide nearly 5V at $V_{\rm pp}$ pins. LED9 gives visual indication of 5V at $V_{\rm pp}$ pins of sockets 1

and 2. Switch S2 is used for applying 12V pulses to $V_{\rm PP}$ pins of sockets 1 and 2. It protects the IC (to be programmed) from accidentally getting 12V upon power-on and thereby damaging it since 12V should be applied only when control signals are active for erasing or programming functions, and that too for limited duration. If 12V is applied for a longer duration, $V_{\rm PP}$ pin internally gets shorted to ground and further programming is not possible.

IC MAX232 (IC2) is used as an RS-232 level converter. Pins 10 (RXD) and 11 (TXD) of IC1 are connected to pins 3 and 2 of 9-pin D connector, respectively via IC2. The PC keyboard is connected to pins 12 and 14 of IC1.

For compactness, a single 12.6V DC

DATA.BAS

input "Filename= ";q\$ open q\$ for random as #3 len=1 field #3,1 as m\$ open "Com1:1200,n,8,1,cs,ds,cd" as #1 flag=0 pause=false:on error goto 9000 open "scrn:" for output as #2 OPEN "CAPTURE.DAT" FOR OUTPUT AS #4 locate ..1 xoff\$=chr\$(19):xon\$=chr\$(17) 510 n\$=inkey\$: if n\$="s" or n\$="S" then flag=1 : goto 800 IF N\$="Y" THEN FLAG2=1 520 if n\$<> "" then print #1,n\$;: if eof(1) then 510 570 if loc(1)>128 then pause=true:print #1, xoff\$: n\$=input\$(loc(1),#1) lfp=0 630 lfp=instr(lfp+1,n\$,chr\$(10)) if lfp>0 then mid\$(n\$,lfp,1)=" ":goto 630 print #2,n\$; IF FLAG2=1 THEN PRINT #4, N\$; if loc(1)>0 then 570 if pause then pause=false: print #1,xon\$; goto 510 800 for kk=1 to 30000:next kk:get #3 print #1,m\$; : rem print m\$; get #3: print #1,m\$; :rem print m\$; 830 if eof(1) then 830 :REM ;data received 835 NUMB=NUMB+1 :REM;no. of bytes n\$=input\$(loc(1),#1) lfn=0850 lfp=instr(lfp+1,n\$,chr\$(10)) if lfp>0 then mid\$(n\$,lfp,1)=" ":goto 850 print #2,n\$; IF N\$="R" THEN PRINT #2, "stopped on error": GOTO 9001 IF NUMB>=5 THEN numb=0 :goto 860 855 if eof(1) then 855 goto 835 860 if not eof(3) then 800 end 9000 print "err.no:", err:resume 9001 END

supply is used for the programmer board. While Vpp pulse generation circuitry makes use of 12.6V, however all ICs deployed on the board need regulated 5V DC for their operation. Regulator IC 7805 (IC4) generates 5V supply from the 12.6V DC to meet this requirement.

Port 0 of IC1 connected to the ZIF socket-1 and ZIF socket-2 serves as a bidirectional port for writing (programming) and reading of data to/from the ICs being programmed.

1. In the direct keyboard-entry mode, data entered via the keyboard has to be output to the LEDs for viewing. During write operation control signal P2.4 would be logic 0 while P2.5 through P2.7 would be at logic 1 (0111H). For reading data from the programmed IC, port 0 is converted into an input port by outputting FF hex before outputting the control signals (0011H) via pins P2.4 through P2.7 respectively. Thus, the function of port 0 is bidirectional.

2. In the serial-port interface mode, data transfer from PC to programming board occurs serially and after two bytes of ASCII code are received at the programming board, the same are converted into

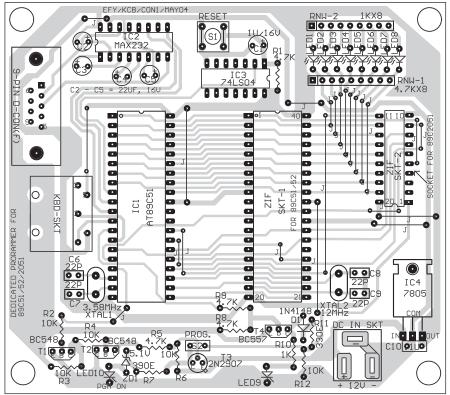


Fig. 8: Component layout for the PCB

one hex byte before being programmed into the new IC (in ZIF socket). The programmed data is then verified before sending the same, along with its address to the PC for its display on PC monitor. (The data followed by address is output serially to the computer.) The above procedure is repeated for programming and displaying of the next data byte.

Proper handshaking between the PC and programming board is essential for successful operation. The program (data.bas) for interfacing the PC to the programming board is written in Turbo Basic.(Turbo Basic TB.EXE file is included in current EFY-CD along with other software) The source code of data.bas is given below:

Start the Turbo Basic program (TB. exe) on the PC, select 'Key Break–On' in the Option menu bar, load the program (data.bas) for interfacing the PC and the programming board and run it. The program works in the non-compiled mode also. (*Note.* At line #800, the maximum value of variable kk may be varied, as necessary, depending on your PC's speed, so that the program works smoothly)

Programming

We shall discuss programming aspects relating to both the modes of operation

namely, the direct keyboard-entry mode and the serial-port interface mode. For each mode a separate preprogrammed 89C51 microcontroller chip with different codes (for monitor program) is required.

Programming using direct keyboard-entry mode. In this configuration, a PC keyboard is connected to the board via keyboard connector provided on the programming board. The preprogrammed (with pgrmod1 data code) 89C51 microcontroller chip is put into the socket for IC1 and connected to a 12.6V supply. The IC to be programmed is inserted only after ensuring that 'Program' LED10 is off and resetting the circuit using push-toon switch S1. Now programming can be started. Of course, only one of the two ZIF sockets is to be used at a time.

The keyboard is used for entering the address location, program data and commands for programming, verifying (reading) the programmed data bytes and erasing of the entire chip. The 'on' and 'off' status of the display LEDs indicate low (0) and high (1) logic levels, respectively (i.e. complement of the data). The software program takes into consideration the keys used for entering hexadecimal numbers 0 through 9 and letters A through F as also the keys used for high-address selection, low-address selection, incrementing, decrementing, programming and erasing as per the following details:

1. **Enter** key is used for incrementing the address.

2. **Backspace** key is used for decrementing the address.

3. **H** key is used for making the data field value as the high address.

4. L key is used for making the data field value as the low address.

5. T key is used for programming data at the current location.

6. \mathbf{R} key is used for erasing the programmed IC.

7. S key is used for signature verification. It shows 1E on the LEDs.

When data, say, 75 is entered from the keyboard by first pressing '7' followed by '5', the display LEDs show the entered data. If a mistake occurs during entry; say, '6' is entered after '7', re-entering '7' and '5' shows 75 Hex on the LED display.

To program this data into the microcontroller at location 0000H, press T key while keeping the 12V supply switch S2 pressed. This results in 75H to be programmed at location 0000H.

To advance to the next location, press Enter key. (To go back, press Backspace key.) Now enter the next byte to be programmed, say, 90H. If needed, correct as before. (Do not press Enter key or keys other than 0 through 9 and A through F.)

Then press T key again along with switch S2 to store 90H at location 0001H.

Every time T key is pressed, the 12V LED (green LED) blinks. This shows that the 12V pulse is applied to the EA/VPP pin. In this way data can be entered and programmed into the new IC byte-by-byte.

If data is to be entered at a location other than start address 0000H, the starting address can be set by using H and L keys as follows:

Supposing that you want to start programming from address 0250H. Enter 0 followed by 2 and then press H key. The high address is set to 02 Hex. Now Enter '5' followed by'0' and then press L key. The low address is set to 50 Hex. Thus, the programming start address is set to 0250H. The data is shown on the eight LEDs. (Please note that in a new good IC, all memory locations should read FF hex.) With an 89C2051 microcontroller (in ZIF socket-2) programming and verification (reading) cannot start from location other than origin (0000H) since 89C2051 has no provision for address input directly, but only by counting pulses applied into its pin 5, and the address is advanced by pulsing pin 5 (address line A0).

To read/verify data in an already programmed device starting with address 0000H, press Reset switch S1 and keep on pressing the Enter key to read data on the LED display byte-by-byte.

Erasing is done simply by resetting and pressing 12V switch S2 followed by R key. The 12V LED glows for a fraction of a second. The 12V LED should glow momentarily only when T (Program) key or R (Erase) key is pressed.

Programming using the serial port interface mode. For this mode of operation the keyboard is not connected to the circuit board, but a 3-core cable is connected to the PC's spare Com port 1 or Com port 2 from the 9-pin 'D' connector on the programming board. Operation in this mode is feasible using DOS or Windows operating system. Programming the microcontroller IC in this mode requires ASCII code file (with extension .ASC), or the programming can be done byte-bybyte, using the PC's keyboard under 'P' option as explained later. The ASCII file is developed as follows:

1. The source program file (with extension .ASM) is developed using Assembly language, for which one can use X8051. exe cross-assembler program. The same program also generates its object code file (with extension .OBJ).

2. The code is converted into binary format (with .BIN extension) using the LINK151.exe program.

3. The binary file (with .BIN extension) is then converted into ASCII file (with .ASC extension) using the BIN4ASC. exe program.

As stated earlier, a different monitor program (with pgrmod2 data code), burnt into 89C51 IC is placed in the socket of IC1. Switch on the 12.6 V supply to the circuit board, insert the IC to be programmed in the ZIF socket and connect the programming board to the PC's Com port. Then, press Reset switch. If the 12V LED glows inadvertently at power-on, pressing the Reset button will put it out. Ensure that the 12V switch S2 is initially off.

Now you may run the data.bas program on the PC. This program sets the Com port for 1200 bauds, 8 bits, no parity. The program then prompts for the name of the ASCII file that is to be programmed into the fresh IC (in ZIF socket), as follows :

Filename?

Enter the file name interactively. For example, if the ASCII file name is EFY. ASC, type the same and press Enter key. (The code in EFY.ASC file contains code to display a message 'ElectronicForYou' on a 16X1 LCD module, which uses a Hitachi controller or equivalent that considers the single row as a configuous address from 0 to 15 for its 16 characters.) Now press Reset switch S1 on the board, momentarily. The following message should appear on PC monitor via the RS-232 Com port:

READY, Which Device, 8951 Or 52 Or 2051?

If the message doesn't appear on pressing Reset, check RS-232 connecting wires. Also check whether TXD pin 11 of the preprogrammed IC 89C51 is pulsing, using a logic probe. (It should pulsate.)

Enter 1, 2 or 3 to select the device. If you press key 1, the following message appears on the screen:

8951 choice

However, if you enter 2, the choice is 8952, and if you enter 3, the choice is 89C2051.

Now the program prompts:

Want to Erase, or Read or Prog or Lock? (E/R/P/L)

Make sure that 12V LED is 'off,' then press the 12V switch S2 and enter 'E' for erasing (if desired) the chip. The 12V Program LED10 glows for a while. You need not press Enter key after 'E' key is pressed.

After erasing is over, the following message comes up:

ERASE OVER, Now Send Data

For sending data (for programming) to the programming board from the PC, an ASCII file is needed. Simply enter 's' from the PC's keyboard. Of course, before entering 's' key, you need to ensure that, prior to pressing of the s key, the 12V LED does not glow. Now, keep the 12V switch pressed for the entire programming duration.

The data transfer takes place and the address gets incremented by one after programming each memory location. The 12V LED keeps on blinking during the programming process. The board sends the currently programmed address along with data to the PC for display on the monitor screen and we can watch this programming process.

The address gets incremented until either the entire chip has been programmed or else the data in the ASCII file has ended. Now open the 12V switch S2 and press Reset switch S1, on the board.

Data is programmed into the IC correctly, because after each byte is sent and programmed, the same is verified there. Then the next address is output to the PC to inform at what address programming is proceeding. In case data sent and data verified do not match, the following error message comes up:

ERR AT xxxx (Address)

and the program halts. Press Reset on the programming board to resume programming of the IC.

If the chip is programmed completely, the following message appears:

OVER

The read chip (R) option allows you to read the contents of a programmed microcontroller in the socket. This is useful to read already programmed chips, but if the lock bit is programmed, no data can be read.

In response to the prompt "Want to Erase, or Read or Prog or Lock? (E/R/P/L)" message, if you press R key, data is output to the computer (Binary data and so not in readable form directly.) The program automatically creates the capture.dat file containing data captured from the microcontroller in the current directory.

After data transfer is over, the program again prompts:

WANT TO ERASE, or READ or PROG or LOCK? (E/R/P/L)

If you want to exit from the program, press Control key in combination with Scroll Lock key followed by Escape key. All menu bars get enabled. Now, press Reset key on the programmer board. The captured data in capture.dat file can be viewed using debug utility. For this, first go to the DOS prompt command line and then go to the directory that contains the capture.dat file. Type debug capture.dat on the command prompt, press Enter key and then type 'd.' The captured data is displayed on the screen. The dump 'd' command shows data in the chip, which has been captured by the capture.dat file.

On the other hand, if you select programming (P) option in response to the "Want to Erase, or Read or Prog or Lock? (E/R/P/L)" prompt, you can program starting with any chosen memory address location on the target microcontroller chip (in ZIF socket-1) or from location 0000H(in ZIF socket-2)using the PC's keyboard. It first verifies the signature byte on the target microcontroller IC and checks whether it is correct. (The signature byte for an Atmel IC is 1E hex.) If the signature tallies, the board sends the following message to the PC:

SIGNATURE OK

If the signature does not tally, the following error message appears on the screen:

ERROR SIGNATURE, HALTED

If the signature is correct, the program prompts:

ENTER ADDRESS

For example, if the starting address is 0010H (for IC in ZIF socket-1) and data to be stored at 0010H is 75H, then proceed as follows.

Enter the four-digit hex address 0010 (do not press 'Enter' key). Now press '7.' Then press '5' in combination with the 12V switch (S2). Data 75H gets programmed at location 0010H. Release switch S2 after a single byte (75) is programmed. The PC's screen shows '75.'

The address automatically increments to the next address (0011). The desired data for the new address can be entered by following the above procedure. Further data can be programmed in the same manner byte-by-byte. When all the data has been entered in this manner, press Reset switch S1.

If you want to program all the data contained in EFY.ASC file, starting from location 0000H, then after typing the fourdigit hex address (0000), hold 12V switch S2 in pressed state and press s key. Thereupon, the green LED (LED10) flashes fast to indicate data transfer byte-by-byte. The screen shows data being programmed at the current address.

If there is an error in verification at any location, the following message, as

stated earlier, appears:

ERR AT

and the program halts. Press Reset on the programming board to resume programming of the IC.

In this case, erase the chip and again try to program it.

The address gets incremented until either the chip has been programmed completely or else the data in the ASCII file has ended. After the programming is complete, release the 12V switch S2 and press Reset switch S1 on the programming board.

There is also a provision to write lock bit-1(refer Table). For this, choose the lock bit option 'L' in response to the "Want to Erase, or Read or Prog or Lock? (E/R/P/L)" prompt. Before pressing L key, the 12V LED should not glow inadvertently. If it does, press Reset to put it off. If the LED is 'off,' hold the 12V switch pressed and enter 'L' from the keyboard. The following message appears on the screen:

LOCKED,..., CAN'T, READ

When the microcontroller is locked, the capture.dat file can't capture data in read option.

Practical demo circuit and programming example

The LCD module can be directly interfaced with an 89C51 (or 89C52) or 89C2051 chip as follows:

1. Fig. 5 shows interface circuit between an 89C51 microcontroller and an LCD module. Here eleven lines of microcontroller 89C51 are interfaced to the LCD module. Port 1 (8 lines comprising pin numbers 1 through 8) are used as data lines and three lines (P3.2 through P3.4 of port 3 of the 89C51 microcontroller) are used as control lines, respectively, for the LCD module. Accordingly, pins 1 through 8 of 89C51 are connected to data pins 7 through 14 of the LCD module. Port pins P3.2 through P3.4 (pins 12 through 14) are connected to pins 4 through 6 of the LCD module. Pin 31 of IC 89C51 is pulled high. The message "ElectronicForYou" gets displayed on the LCD module after you press Reset switch shown in Fig. 5. The listing file containing the source code burnt into 89C51 is given here as EFY.LST.

2. Fig. 6 shows interface circuit of the LCD module to 89C2051 microcontroller. Here pins 12 through 19 of the 89C2051 are connected to data pins 7 through 14 of the LCD module. Pins 6 through 8 of Port 3 (P3.2 through P3.4) are connected to pins 4 through 6 of the LCD module. The message "ElectronicForYou" gets displayed on the LCD module after you press Reset switch shown in Fig. 6. Both ICs (89C51 and 89C2051) contain identical program and as such EFY.LST is common for both the circuits of Figs. 5 and 6.

Note. For above examples, use only Hitachi HD44780U controller based on 16-character X 1-line LCD module.

An actual-size single-side PCB layout for the programmer circuit of Fig. 4 is shown in Fig. 7 with its component layout in Fig. 8.

The programs for the direct keyboard entry mode (pgrmod1.lst) and the serialport interface mode (pgrmod2.lst) are selfexplanatory. All relevant files, pertaining to this article, are included in the CD.

	PGRMOD1.LST												
	2500 A	D. 8051 CRO	SS ASSEMBLER - VI	ERSION 3.41f	29 30	$\begin{array}{c} 0041 \\ 0043 \end{array}$	C2 B3 C2 50	CLR P3.3 CLR SMALL	; LOW TO P3.3 GIVES 5 v TO EA VPP PINS ; ASSUME BIG IC				
1			AME : PGRMOD1.ASM NAME : PGRMOD1.OF		31 32 33 34	0045 0047 0049 004C	D2 B6 D2 B7 90 00 00 7A 00	BEG: SETB P3.7 MOV DPTR,#0 MOV R2,#0	SETB P3.6				
2 3 4 5	00 32 00 B6 00 B7 00 50	TEMP ALE	.EQU 32H .EQU 0B6H VOLTS SMALL	;P3.6 .EQU 0B7H .EQU 50H	35 36 37 38	004E 0050 0052 0054	E5 82 F5 90 E5 83 44 C0	A0: MOV A,DPL MOV P1,A A1: MOV A,DPH ORL A,#0C0H	; CONTROL CODE READ				
6 7 8 9	0000 0000 0003 0003	01 30 E1 03	.ORG 0000H RESET: AJMP MONI .ORG 0003H AJMP 0703H	·	$39 \\ 40 \\ 41 \\ 42$	0056 0058 0059 005B	F5 A0 EA F5 80 12 00 78	MOV P2,A A11: MOV A,R2 MOV P0,A AA: CALL KBD1	; SO ADDRESS IS SET TO 00 00				
10 11 12 13	000B 000B 000F 000F	E1 05 E1 0B E1 23	ORG 000BH AJMP 070BH ORG 000FH AJMP 0723H	; TO TIMER/COUNTER INTERRUPT '0' ; SERIAL INTERRUPT	43 44 45 46	005E 0061 0062 0064	12 01 E8 FB 94 40 50 1C	CALL CONVERT MOV R3,A SUBB A,#040H JNC D					
14 15 16	0013 0013 001B	E1 13	.ORG 0013H AJMP 0713H .ORG 001BH	; EXT. INT. 1 ADDRESS	47 48 49 50	0066 0067 0068 006A	EA C4 54 F0 4B	MOV A,R2 SWAP A ANL A,#0F0H ORL A,R3					
17 18 19 20	001B 0023 0023 0030	E1 1B E1 23	AJMP 071BH .ORG 0023H AJMP 0723H .ORG 30H	; EXT. TIMER COUNTER 1 INT. VEC. ; SERIAL PORT INTERRUPT VECTOR	50 51 52 53	006A 006B 006C 006E	4B FA E5 83 44 E0	MOV R2,A MOV A,DPH ORL A,#0E0H	; CONTROL CODE WRITE SO NEW IC				
21 22 23 24 25 26	0030 0030 0033 0036 0039 003B	75 B0 FF 75 81 60 75 80 FF C2 90 D2 B3	MONI: ST: MOV P3,#0FFH MOV SP,#060H MOV P0,#0FFH CLR P1.0 SETB P3.3	; ALL BITS IN PORT 3 SET CLR P3.6 ; PIN 5 OF 2051 GND ; SET 5 \vee TO EA VPP PIN LOW (PIN 1 2051 LOW)	54 55 56 57 58 59	0070 0072 0074 0076 0078 007B	F5 A0 E5 82 F5 90 01 58 12 01 C4 B4 F0 FA	MOV P2,A MOV A,DPL MOV P1,A AJMP A11 KBD1: CALL KBD CJNE A,#0F0H,KBD:	DATA DOES NOT CLASH WITH THIS				
27 28	003D 003F	7F 28 DF FE	MOV R7,#040 DJNZ R7,\$	2031 EOW)	60 61 62	007E 0081 0082	12 01 C4 22 EB	CALL KBD RET D: MOV A,R3					

65 0089 B4 42 03 A2:CJNE A,#042H,A3 ; LOW ADDRESS SET KEY 171 0175 F5 32 MOV TEMP,A 66 0960 02 00 CE JMP L1 ; THIS KEY TOO WONT WORK FOR 2051 IC 172 0177 EA MOV A, R2 67 008F B4 43 03 A3: CJNE A,#043H,A4 ; GO KEY 173 0178 B5 32 84 CJNE A,TEMP,ERR 68 0092 02 00 DL JMP GA 174 0178 0178 JMP AA 69 0095 B4 48 03 A4: CJNE A,#048H,A5;SIGNATURE s KEY 175 017D 74 10 ERASE: MOV A,#10H 70 0098 02 00 E0 JMP SIGNATURE s KEY 176 017D 74 10 ERASE: MOV A,#10H 70 098 02 00 E0 JMP SIGNATURE s KEY 176 017D 74 10 ERASE: MOV A,#10H 71 098 B4 470 A5: CJNE A,#047H,A6; ENTER KEY 176 017F F5 A0 MOV P2,A ; ERASE CODE	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E LOW VOLTS
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
87 00C6 F5 83 MOV DPH,A 192 019E 22 RET 88 00C8 44 C0 ORL A,#0C0H ; READ MODE ONLY 193 019F 74 F0 LOCKBT1: MOV A,#0F0H 89 00CA F5 A0 MOV P2,A 194 01A1 F5 A0 MOV P2,A 90 00CC 15 B AJMP A4, DISPLAY NOW SHOWS THE DATA THERE! 195 01A3 TF 0A MOV P2,A 91 00CE 75 80 F L1: MOV P0,40FFH ; PORT 0 SHOULD BE INPUT PORT NOW! 196 01A5 DF FE DNR Zr,5 92 00D1 EA MOV A,R2 197 01A7 7F 30 MOV R7,#48 ; CLCL 93 00D2 F5 80 MOV DPL,A 198 01A9 DF FE DJNZ Zr,5 94 00D4 F5 90 MOV PL,A 199 01AB C2 B7 CLR P3.7 ; VOLTS 12	
95 00D6 E5 83 MOV A,DPH 200 01AD 7F 0.A MOV R7,#10 96 00D8 44 C0 ORL A,#0C0H ; READ MODE ONLY 201 01AF DF FE DNR Z7,3 ; DELAY 10 MICRO 97 00DA F5 A0 MOV P2,A 202 01B1 C2 B6 CLR P3.6 ; ALE LOW 98 00DC 015 B AJMP AA, JISPLAAY NOW SHOWS THE DATA THERE! 203 01B3 TF 0.A MOV R7,#10 99 00DE 80 FE GO: SJMP \$\$; FOR FUTURE USE NOW HALTS HERE! 204 01B5 DF FE DJNZ R7,\$; DELAY 10 MICRO 100 00E0 D2 B6 SIGNATURE: SETB P3.6 ; ADE PAGE 205 01B7 D2 B6 SETB P3.6 ; ALE MADE HIGH 100 02E 75.80 FF MOV P0,#0FFH 206 01B9 31 96 CALL DELAY ? MS DELAY FOR PROGR	AMMING GIVEN HIGH AGAIN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
111 00F8 E5 80 MOV A,P0 215 01CC A2 B2 K4: MOV C,P3.2 112 00FA B4 1E 02 CJNE A,#01EH,ERR 216 01CE 50 FC JNC K4 113 00FD 015B JMP AA ; IF OK, THEN PROCEED WITH FURTHER 216 01CE 50 FC JNC K4 114 00FF 12 0104 ERR: CALL BEP 219 01D4 A2 B4 MOV C,P3.4 115 0102 01 FF AJMP ERR ; ELSE SHOW THE WRONG DATA NOT 220 01D6 EF MOV A,R7 116 0104 D2 97 BEEP: SETB P1.7 ; USE PORT 1 BIT 7 (A7 ADDR. LINE!) 222 01D8 FF MOV R,A	
TO PULSE 223 01D9 A2 B2 K6: MOV C,P3.2 117 0106 12 01 10 CALL DEL2 224 01DB 50 FC JNC K6 118 0109 C2 97 CLR P1.7 225 01DD DB F1 DJNZ R3,K5 119 010B 12 01 10 CALL DEL2 226 01DF 31 E3 ACALL DELAY1 120 010C 210 4 AJMP BEEP 227 01E1 FD MOV R5,A 121 0110 7F FF DEL2: MOV R7,#0FFH 228 01E2 22 RET 122 0112 00 BPN: NOP 229 01E3 7C 80 DELAY1: MOV R4,#80H 123 0113 DF FD DJNZ R7,BPN 230 01E5 DC FE DJNZ R4,\$	
124 0115 22 RET 231 01E7 22 RET RET 125 0116 75 80 FF NEXT_ADDR: MOV P0,#0FFH ; PORT 0 SHOULD BE 232 01E8 CONVERT: 126 0119 05 82 INC DPL 233 01E8 B4 45 03 CODECHK: CJNE A,#45H,K1 126 0119 05 82 INC DPL 234 01EB 74 00 MOV A,#0 ; "0" KEY 127 011B E5 82 MOV A,DPL 236 01ED 22 RET 128 011D F5 90 MOV P1,A 236 01EE B4 16 03 K1: CJNE A,#16H,K2 129 011F B4 00 02 CJNE A,#0,NN1 237 01F1 7 401 MOV A,#1 ; "1" KEY	
137 0130 C2 90 CLR P1.0 245 0200 B4 25 03 K41: CJNE A,#25H,K51 138 ; NOW DISPLAY SHOWS 246 0203 74 04 MOV A,#4 ; "4" KEY DATA AT THAT ADDRESS AUTOMATI- 247 0205 22 RET CALLY 248 0206 B4 2E 03 K51: CJNE A,#2EH,K61 ; "5" KEY	
139 0132 01 5B NM2: JMP AA 249 0209 74 05 MOV Å,#5 140 0134 30 50 02 BACKADDR: JNB SMALL,POSS ; NOT POSSIBLE FOR 250 020B 22 RET 141 0137 01 5B JMP AA 2051 TO DEC. ADDR ! 251 020C B4 36 03 K61: CJNE A,#36H,K7 ; "6" KEY 250 020F 7 4 06 MOV Å,#6	
142 0139 75 80 FF POSS: MOV P0,#0FFH ; PORT 0 SHOULD BE INPUT PORT 253 0211 22 RET 143 013C 15 82 DEC DPL 255 0215 74 07 MOV A,#7	
144 013E E5 82 MOV A,DPL 256 0217 22 RET 145 0140 F5 90 MOV P1,A 257 0218 B4 3E 03 K8: CJNE A,#03EH,K9 146 ; NOW DISPLAY SHOWS 258 021B 74 408 MOV A,#8 ; "6" KET DATA AT THAT ADDRESS AUTOMATI- 259 021D 22 RET CALLY CALLY 260 021E B4 46 03 K9: CJNE A,#46H,KA ; "9" KEY	
147 0142 B4 FF 02 CJNE A,#0FFH,NM1 261 0221 74 09 MOV A,#9 148 0145 15 83 DEC DPH 262 0223 22 RET 149 0147 E5 83 NM1: MOV A,DPH 263 0224 B4 70 03 KA: CJNE A,#70H,KB ; "0" KEY 150 0149 44 C0 ORL A,#0C0H ; CONTROL CODE READ 264 0227 7 400 MOV A,#0	
151 014B F5 Å0 MÖV P2,A ; WRITE THERE 265 0229 22 RET 152 014D 015B JMP AA 266 022A B4 69 03 KB: CJNE A,#69H,KD ; "1" KEY 153 014F C2 B3 PROG: CLR P3.3 267 022D 74 01 MOV A,#1	
154 0151 7F 30 MOV R7,#48 ; 48 CLCL 268 022F 22 RET 155 0153 DF FE DJNZ R7,\$ 269 0230 B4 72 03 KD: CJNE A,#72H,KE ; "2" KEY 156 0155 C2 B7 CLR P3.7 ; VOLTS 12 270 0233 74 02 MOV A,#2 157 0157 7F 0A MOV R7,#10 271 0235 22 RET	
158 0159 DF FE DJNZ R7,\$; DELAY 10 MICRO 272 0236 B4 7A 03 KE: CJNE A,#07AH,KF ; "3" KEY 159 015B C2 B6 CLR P3.6 ; ALE LOW 273 0239 74 03 MOV A,#3 160 015D 7F 0A MOV R7,#10 274 023B 22 RET	
161 015F DF FE DJNZ R7,\$; DELAY 10 MICRO 275 023C B4 6B 03 KF: CINE A,#06BH,KG ; "4" KEY 162 0161 D2 B6 SETB P3.6 ; ALE MADE HIGH 276 023F 74 04 MOV A,#4 163 0163 12 016 CALL DELAY ; 2 MS DELAY FOR PROGRAMMING GIVEN 277 0241 22 RET 164 0166 D2 B7 SETB P3.7 ; VOLTS ;ALE PIN MADE HIGH AGAIN 278 0242 B4 73 03 KG: CJNE A,#73H,KH ; "5" KEY	
AND VOLTS NOT 12 V 279 0245 74 05 MOV A,#5 165 0168 D2 B6 SETB P3.6 ; ALE 280 0247 22 RET 166 016A 75 80 FF MOV P0,#0FFH ; MAKE PORT 0 AS INPUT PORT 281 0248 B4 74 03 KH: CJNE A,#74H,KI ; "6" KEY 167 016D E5 83 MOV A,DPH 282 0248 74 06 MOV A,#6 168 016F 44 C0 ORL A,#0C0H ; CONTROL CODE FOR READ 283 024D 22 RET	

284 285	024E 0251	B4 6C 03	KI: CJNE A,#06CH,KJ	; "7" KEY			$318 \\ 319$	028F 0290	22 B4 32 03	RET			
285 286	0251 0253	7407 22	MOV A,#7 RET				319 320	0290 0293	B4 32 03 74 0B	MOV A,#01	A,#32H,KU	YB;	
280	0255	B4 75 03	KJ: CJNE A,#75H,KK	; "8" KEY			320 321	0295	22	RET	л , кі	ль,	
287	0254 0257	54 75 05 74 08	MOV A,#8	; O KEI			321 322	0295 0296	B4 21 03		A.#21H.KV		
289 289	0257	22	RET				323	0296	74 0C	MOV A.#0		YC;	
289	0259 025A	B4 7D 03	KK: CJNE A,#75H,KL	: "9" KEY			323 324	0299 029B	22	RET	; кі	.10;	
290 291	025A 025D	54 7D 03 74 09	MOV A,#9	; 9 KE1			324 325	029B 029C	B4 23 03		A,#23H,KW		
291 292		74 09 22	RET									W D	
292 293	025F						326	029F	74 0D 22	MOV A,#01 RET	DH ; KI	EYD;	
	0260	B4 5A 03 74 47	KL: CJNE A,#05AH,KM	; "ENTER" KE	ĭ		327 328	02A1 02A2	22 B4 24 03		A HOATTIZY		
294	0263 0265	74 47 22	MOV A,#47H RET				328 329	02A2 02A5	B4 24 03 74 0E		A,#24H,KX		
295 296	0265	22 B4 33 03		: "H" KEY			329 330	02A5 02A7	74 0E 22	MOV A,#01 RET	EH	; e KE	7
			KM: CJNE A,#33H,KN	; I KEI								; e KE	I
297	0269	74 41	MOV A,#41H				331	02A8	B4 2B 03		A,#02BH,KY		
298	026B	22 D4 4D 00	RET	UT 17T3X7			332	02AB	74 0F	MOV A,#01	rH	E KE	\$7
299	026C	B4 4B 03	KN: CJNE A,#04BH,KO	; "L" KEY			333	02AD	22	RET		; F KE	ĭ
300	026F	74 42	MOV A,#42H				334	0045	D (0D 00	IN OND		0701	
301	0271	22	RET	LAGRODAGE			335	02AE	B4 2D 03		A,#02DH,KZ	; 07BH	
302	0272	B4 66 03	KO: CJNE A,#66H,KP	; bACKSPACE			336	02B1	74 4B	MOV A,#04	ibh ; SN	IALL R K	
303	0275	74 44		DECREMENT			337	02B3	22	RET		; ERAS	5E
304	0277	22 D. 1D 00	RET				338	0000	D / 0 / 00	WZ ODD			
305	0278	B4 1B 03	KP: CJNE A,#01BH,KQ		,		339	02B4	B4 34 03		A,#34H,KZ1		
306	027B	74.48	MOV A,#48H ; INC	REMENT ONLY			340	02B7	74 43	MOV A,#04	43H		
307			222		; KEY IS S KEY		341	02B9	22	RET			
308	027D	22	RET				342	02BA	B4 2A 03		A,#02AH,KZ2		
309	027E	B4 2C 03	KQ: CJNE A,#02CH,KR				343	02BD	74 0B	MOV A,#01	BH		
310	0281	74 4A		GISTER STORE			344	02BF	22	RET			
311	0283	22	RET	; IS T KEY			345	02C0	B4 3A 03		E A,#3AH,KZ3		
312							346	02C3	74 4D	MOV A,#41	DH		
313	0284	B4 42 03	KR: CJNE A,#42H,KT	DU DOD NO			347	02C5	22	RET			
314	0287	74 49		EY FOR NO			348	02C6	74 FF	KZ3: MOV	A,#0FFH		
315	0289	22	RET	; ACCESS			349	02C8	22	RET			
316	028A	B4 1C 03	KT: CJNE A,#01CH,KS	7.4		3	350	02C9	CODMDUDD	ENI		DODO	0
317	028D	74 0A	MOV A,#0AH ; KEY	ΥА;				LINES A	SSEMBLED :	350	ASSEMBLY EI	RORS :	0

	2500 A.	D. 8051 CROS	S ASSEMBLER - VE	ERSION 3.41f		55 56	00AC 00AF	90 00 B5 12 03 7E		DPTR,#MES3 MESDISP	
1			ME : PGRMOD2.ASM IAME : PGRMOD2.OE			57 58	00B2 00B5 00B9	02 00 F4 38 39 35 32 20 43 48 4F	JMP S	54	,"2"," ","C',"H","O","I","C","E",10,13,FFH
2 3 4	0000 0000	.ORG 0 01 30	JMP 0030H			59	00BD 00C1	49 43 45 0A 0D FF		N2:	:Max addr. for SMALL ic IS 2K
5 6 7	0023 0023	.ORG 02 03 95	23H JMP SERINT	; ISR SERIAL		60 61 62	00C3 00C6 00C9	B4 33 2C 75 41 08 D2 31	MOV	A,#33H,N3 MAXADR,#08H SMALL	,
8 9 10 11 12 13 14 15 16 17	0030	00 40 00 41 00 43 00 30 00 31 00 B7 00 B6	PC .EQU 40H MAXADR SER_DATA FLAG SMALL VOLTS ALE .ORG 30H	.EQU 41H .EQU 43H .EQU 30H .EQU 31H .EQU B7H .EQU B6H	;P3.7 ;P3.6		00C5 00CB 00CE 00D1 00D3 00D5 00D7 00D9 00DB 00DD 00DF	D2 31 90 00 E4 12 03 7E C2 B3 D2 B7 D2 B5 C2 90 7F 30 DF FE C2 B5 D2 B6	MOV CALL CLR I SETB SETB CLR I	DPTR,#MES4 MESDISP 23.3 P3.7 P3.5 P1.0 R7,#48 R7,\$ P3.5 P3.5	; MAKE 5 V AVAILABLE FOR VPP PIN 1 ; DONT APPLY 12 V ; MAKE RST PIN GROUND VIA 7406 ; MAKE PIN XTAL 1 LOW ; MAKES RST PIN1 TO 5 volts
18 19	0030	75 81 60	BEGIN: MOV SP,#60			73 74	00E1 00E1	02 00 F4	JMP	54	
20 21 22 23	0033 0036 0039	75 B0 FF 75 90 00 75 80 FF	MOV P3,#FFH MOV P1,#0 MOV P0,#FFH	;all bits of port 3 set ;TEST		75 76	00E4 00E8 00EC	32 30 35 31 20 43 48 4F 49 43 45 0A	MES4	: .DB "2","0","5",	"1"," ","C',"H","O","I","C","E",10,13,FFH
24 25	003C 003F	12 03 89 KK2:	CALL SER_INIT			77	00F0 00F2	0D FF 01 42	N3:	JMP MM1	
26 27	003F	75 A8 90	MOV IE,#90H	ENABLE SER INTE	RRUPT	78 79	00114	(0) D0	G 4		; PROGRAM FOR 8951 BEGINS
28 29 30	0042 0045 0048	90 00 4B 12 03 7E 02 00 7C	MM1: MOV DPTR,#M CALL MESDISP JMP S2	IESI		80 81	00F4 00F6	C2 B3 90 00 FF	S4: MOV	CLR P3.3 DPTR,#ERASEI	;5 v TO EA VPP PIN AND ALSO TO PIN 1 OF 2051 IC SKT MES
31 32 33	004B	MES1:				82 83 84	00F9 00FC 00FF	12 03 7E 02 01 2D	CALL JMP S	MESDISP 55	
34	004B 004F	$52\ 45\ 41\ 44$ $59\ 20\ 57\ 68$.DB R , E , A , D , Y "i","c","e"	"," ","W","h","i","c","h",	, D , e , v ,	85	00FF	57 41 4E 54	.DB	W, A, N, I ","E","R","A","S 'R"." "."P"."R"."O	''''''''''''''''''''''''''''''''''''''
35	0053 0057 005B 005D	$\begin{array}{c} 69\ 63\ 68\ 20\\ 44\ 65\ 76\ 69\\ 63\ 65\\ 38\ 39\ 35\ 31\end{array}$.DB "8","9","5","1"," ","0","r",",","2",	","O","R"," ","5","2"," "0","5","1","?"			0103 0107 010B 010F	20 54 4F 20 45 52 41 53 45 3F 4F 52 20 52 45 41	, 0 ,	","L","O","C","K	"(" ","Ε","/","R","/","Ρ"/"L",10,13,FFH
36 37	0061 0065 0069 006D 0070 0074 0078	$\begin{array}{c} 20 \ 4F \ 52 \ 20 \\ 35 \ 32 \ 20 \ 4F \\ 72 \ 20 \ 32 \ 30 \\ 35 \ 31 \ 3F \\ 45 \ 4E \ 54 \ 45 \\ 52 \ 20 \ 31 \ 32 \\ 33 \ 0A \ 0D \ FF \end{array}$		R"," ","1","2","3",10,13,I	FFH :READY, WHICH DEVICE,		0113 0117 011B 011F 0123 0127 012B	0117 20 50 52 4F 011B 47 20 4F 72 011F 20 4C 4F 43 0123 4B 20 45 2F 0127 52 2F 01 0A			
8951,	OR 52 OR			2051 ? ENTER 1,2,3"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	86 87 88	012D 0130	30 30 FD E5 43	S5:	JNB FLAG,S5 MOV A,43H	
38 39 40 41	007C 007F 0081	30 30 FD E5 43 C2 30	S2: JNB FLAG,\$ MOV A,43H CLR FLAG	serial bufer data	s a data byte received ED THE LAST RECEIVED	89 90 91 92	0132 0134	C2 30 B4 45 03		CLR FLAG CJNE A,#"E",S	56
42 43	0083 0086	B4 31 1D 74 10	CJNE A,#31H,N1 MOV A,#10H	DATA ;for entry "1"	I IS OF H ONLY SO 10 H	93 94 95 96	0137 013A 013D 0140	02 03 E1 B4 52 03 02 01 7D B4 50 03		JMP ERASE S6: CJNE A,#"I JMP READ S7: CJNE A,#"I	
$44 \\ 45 \\ 46 \\ 47 \\ 48$	0088 008A 008C 008F	F5 41 C2 31 90 00 95 12 03 7E	MOV MAXADR,A CLR SMALL MOV DPTR,#MES2 CALL MESDISP	;BIG IC		90 97 98 99 100 101	0140 0143 0146 0149 014C 014E	02 01 F0 B4 4C AB 02 01 4C D2 B7 74 F0		JMP S6_1 S8: CJNE A,#"I JMP LOCK LOCK: SETB F MOV A,#F0H	L",S4
49 50	0092 0095 0099 009D	02 00 F4 38 39 35 31 20 43 48 4F 49 43 45 0A 0D FF	JMP S4 MES2: .DB "8","9","5"	,"1"," ","C',"H","O","I","	C","E",10,13,FFH	102 103 104 105	0150 0152	F5 A0 7F 17 DF FE		MOV P2,A MOV R7,#17H	;OUTPUT TO PORT 2
51 52 53 54	00A1 00A3 00A6 00A8 00AA	0D FF B4 32 1D 74 20 F5 41 C2 31	N1: CJNE A,#32H,N2 MOV A,#20H MOV MAXADR,A CLR SMALL	;for entry "2",Max add	lress for 8052 is 20H	106 107 108 109 110	0154 0156 0158 015A	C2 B7 C2 B6 7F 1C		DJNZ R7,\$ CLR P3.7 CLR P3.6 MOV R7,#28	;ALE LOW VOLTS HIGH ;VOLTS ;ALE ;DELAY 100 MICROSEC

PGRMOD2.LST

111 112	015C 015E	DF FE D2 B6	DJNZ R7,\$ SETB P3.6 ;ALE	210	0005	Do DE		USED NOW	;VOLTS LOW TO 5 V
113 114	$0160 \\ 0162$	D2 B7 90 01 6A	SETB P3.7 ;VOLTS MOV DPTR,#MESLOCK	211 212	0235	D2 B7	SETB P3.7	;VOLTS	;VERIFY PHASE"
$\frac{115}{116}$	0165	12 03 7E	CALL MESDISP	213 214	0237	$75\ 80\ \mathrm{FF}$	MOV P0,#FFF	I	
117 118	0168	01 F4	JMP S4	215 216	023A 023C	E5 31 54 0F	MOV A,31H ANL A,#0FH		
119	016A	4C 4F 43 4B	MESLOCK: .DB "L","O", "C","K","E","D",".", "C","A","N","T"," ","R","E","A","D",10,13,FFH	217 218	023E 0240	44 C0 F5 A0	ORL A,#C0H MOV P2,A	;READ CODE ;HI ADDRESS IN 1	PORT 2
	016E 0172	45 44 2E 43 41 4E 54 20		219 220	$0242 \\ 0244$	E5 30 30 31 03	MOV A,30H JNB SMALL,	7V1	
	0176 017A	52 45 41 44 0A 0D FF		221 222	0247 024A	02 02 4C F5 90	JMP VV2 VV1: MOV P1	,A ; P1 LO ADDR.	
120 121	017D 0180	90 01 90 12 03 7E	READ: MOV DPTR,#MESREAD CALL MESDISP	223 224	024C 024E	7F 20 DF FE	VV2: MOV R7 DJNZ R7,\$,#20H ;DELAY	
122 123	0183 0186	30 30 FD C2 30	RR12: JNB FLAG,RR12 CLR FLAG	225 226	0250	E5 80	MOV A,P0	READ DATA: READS THE DAT	A ON PORT 0
124 125	0188 018A	E5 43 B4 59 F6	MOV A,SER_DATA ;43H CJNE A,#"Y",RR12	227 228	0252	F5 32	MOV 32H,A	SAVE IN DATA L	
126 127	018D 0190	02 01 AD 43 41 50 54	JMP READ1	229 230	0254	EA	MOV A,R2	;GET DATA PROG	RAMMED
121	0194	55 52 45 20	$\begin{array}{c} \widehat{MESREAD}; \ DB \ "C","A","p","","","","","","","","","","","","$	231 232	$0255 \\ 0258$	B5 32 61 12 02 8C	CJNE A,32H,J CALL ADDRO		
	0194 0198 019C	44 41 54 41 20 73 61 79		232 233 234	025B	85 30 82		I ;ADDR INCR.	
	01A0	20 59 20 66		235	025E	85 31 83	MOV DPH,31		
128	01A4 01A7	6F 72 20 79 65 73 0A	.DB "y","e","s",10,13,FFH	236 237	0261 0262	A3 85 82 30	INC DPTR MOV 30H,DP		
129	01AB 01AD	0D FF C2 B3 D2 D5	READ1: CLR P3.3 ; 5V to pin EA\VPP	238 239	0265	85 83 31	MOV 31H,DP	;ADDRESS INCRE	MENT FOR NEXT USE
130 131	01AF 01B1	D2 B7 D2 B6	SETB P3.7 SETB P3.6	240 241	0268 026B	30 31 08 C2 90	JNB SMALL,I CLR P1.0	201	
132 133	01B3 01B5	C2 B5 90 00 00	CLR P3.5 ;HIGHEST ADDR. IS SET LOW MOV DPTR,#0	242 243	026D 026E	00 D2 90	NOP SETB P1.0	;PULSE ADDRESS	LINE FOR 2051
134 135	01B8	E5 83	CONT1: MOV A,DPH	$\frac{244}{245}$	0270 0271	00 C2 90	NOP CLR P1.0		
136 137	01BA 01BC	44 C0 F5 A0	ORL A,#C0H ;READ MOV P2,A	246 247	$0273 \\ 0273$	E5 83	PV1: MOV A,DPH		
138 139	01BE 01C1	30 31 03 02 01 C8	JNB SMALL,CONT2 JMP CONT3	248 249	0275 0278	30 31 06 B4 08 3C	JNB SMALL,I CJNE A,#08H	RR13 MORE1	
140 141	01C4 01C6	E5 82 F5 90	CONT2: MOV A,DPL MOV P1,A	250 251	027B 027E	02 03 CF B4 10 08	JMP END	A,#10H,MORE11	
142 143	01C8 01CA	7F 0A DF FE	CONT3: MOV R7,#10 DJNZ R7,\$	252 253	0281 0283	D2 B5 B4 41 31	SETB P3.5 CJNE A,#MAX	;HIGHEST ADDRI	ESS OF 8052
145 144 PORT	01CC	E5 80	MOV A, PO ; READ DATA AND OUTPUT TO SERIAL	255 254 255	0286	02 03 CF	JMP END	MDR,MORET	
145	01CE	71 A9	ACALL TOUT	256	0289	02 03 CF 02 02 B7	MORE11: JI		
146 147	01D0 01D1	A3 30 31 07	INC DPTR JNB SMALL,CCC	257 258	028C 028C	E5 31	MOV A,31H	ADDROUT:	
$148 \\ 149$	01D4 01D6	C2 90 D2 90	CLR P1.0 SETE P1.0 ;PULSE PIN 5 OF 2051 FOR ADDR. INCR.	259 260	028E 028F	C4 54 0F	SWAP A ANL A,#0FH	-	
$150 \\ 151$	01D8 01D9	00 C2 90	NOP CLR P1.0	261 262	0291 0294	12 03 C2 71 A9	CALL HEXAS ACALL TOUT		
152 153	01DB 01DD	E5 83 30 31 06	CCC: MOV A,DPH JNB SMALL,CC2	263 264	0296	E5 31	MOV A,31H		
$154 \\ 155$	01E0 01E3	B4 08 D5 02 01 EE	CC1: CJNE A,#08H,CONT1 JMP CC3	265 266	0298 029A	54 0F 12 03 C2	ANL A,#0FH CALL HEXAS	С	
$156 \\ 157$	01E6 01E9	B4 10 CF D2 B5	CC2: CJNE A,#10H,CONT1 SETB P3.5 ; HIGHEST ADDRESS MADE HIGH	267 268	029D	71 A9	ACALL TOUT		
158 159	01EB 01EE	B5 41 CA 01 F4	CJNE A,MAXADR,CONT1 CC3: JMP S4	269 270	029F 02A1	E5 30 C4	MOV A,30H SWAP A		
160 161	0100	0111		271 272	02A2 02A4	54 0F 12 03 C2	ANL A,#0FH CALL HEXAS	C	
162 163	01F0	$12\ 03\ 5\mathrm{F}$	S6_1: CALL DISPLAY	273 274	02A7	71 A9	ACALL TOUT		
164 165	01F3	C2 B3	CLR P3.3 ;SWITCH ON 5 v TO EA\VPP ;BITS PORT 2 17 16 28 27 A11 A10 A9 A8	275 276	02A9 02AB	E5 30 54 0F	MOV A,30H ANL A,#0FH		
166	01F5 01F7	D2 B7 D2 B6	SETB P3.7 ;VOLTAGE NOT 12 V SETB P3.6 ;HIGH ALE	277 278	02AD 02B0	12 03 C2 71 A9	CALL HEXAS ACALL TOUT		
167 168	0117	D2 D0	SEIDF3.0 ,IIIGII ALE	279	0200	71 A5	ACALL 1001		
169 170				280 281	02B2	74 0D	MOV A,#0DH		
171 172	01F9	90 00 00	MOV DPTR,#0 ;FIRST ADDRESS OF NEW IC IS POINTED	282 283	02B4 02B6	71 A9 22	ACALL TOUT RET		
TO. 173	01FC	C2 90	CLR P1.0	284 285	02B7	41 07	MORE1: JMP	MORE	
$174 \\ 175$	01FE 0201	85 82 30 85 83 31	MOV 30H,DPL ;ALSO SAVE IN 30,31 INT. RAM MOV 31H,DPH	286 287			ERR: ;SEND	ERROR MESSAGE	
$176 \\ 177$	$0204 \\ 0207$	12 02 CE	CALL SIGNATURE MORE:	288 289	02B9	90 02 C3	MOV DPTR,#		
178 179	0207	E5 31	;GET ADDRESS MOV A,31H ;HIGH ADDRESS	290 291	02BC 02BF	12 03 7E 51 8C	CALL MESDI CALL ADDRO		
180 181	0209 020B	54 0F 44 E0	ANL A,#0FH ORL A,#E0H ;CONTROL CODE FOR WRITING	292 293	02C1	80 FE	SJMP \$		
182 183	020D	F5 40	MOV PC,A ; PC IS STORE FOR PORT 2 data ;WRITE CONTROL CODE	294	02C3 02C7	45 52 52 2E 20 41 54 20	MESERR: .DF	8 "E", "R", "R", ".", " ", "A	","T"," ",10,13,FFH
FORV	VRITE AN	D	ALSO THE PROGRAM HIGH ADDRESS	295	02CB	0A 0D FF			
184 185	020F	F5 A0	MOV P2,A ; OUTPUT TO PORT 2	296 297	02CE			SIGNATURE: :WRITE ADDR 301	H AND CONTROL CODE
186 187	0211 0213	E5 30 30 31 03	MOV A,30H ;LOW ADDRESS JNB SMALL,YES OUT ; DONT OUTPUT ADDR. FOR	298	02CE	C2 B3	CLR P3.3	00 TO READ BYTH PIN 1 HIGH	
188	0215	02 02 1B	JMP NO OUT	299 300	02D0 02D2	D2 B6 D2 B7	SETB P3.6 SETB P3.7	;ALE HIGH ;12 V IS NOT APP	מיזנו
189	0210	F5 90	YES_OUT:MO_001 P1,A ;LOW ADDRESS :LOOK DATA FROM SERIAL AND PUT TO	301 302	02D2 02D4	74 00	MOV A,#00		
190	0010	10.00.00	DATA PORT	303	02D6	F5 A0	MOV P2.A	READ CODE; HI ADDRESS IN 1	PORT 2
191 192	021B 021E	12 03 3E F5 80	NO_OUT: CALL GETBYTE MOV P0,A ; PORT 0 IS DATA	304 305	02D8 02DB	30 31 05 74 00	JNB SMALL, MOV A,#00H	SIGI	
193 194	0220	7F 30	; DELAY 48 CLCL MOV R7,#48	306 307	02DD 02E0	02 02 E4 74 30	JMP SIG2 SIG1: MOV		
195 196	0222	DF FE	DJNZ R7,\$;12 v APPLIED	308 309	02E2 02E4	F5 90 7F 20	MOV P1,A SIG2: MO	; P1 LO ADDR.)V R7,#20H	
197 198	0224	C2 B7	CLR P3.7 ;THIS MAKES 12 v AVAILABLE TO PIN 31 ;DELAY 10 MICROS:	$310 \\ 311$	02E6 02E8	DF FE E5 80	DJNZ R7,\$ MOV A,P0	;DELAY ;DATA READ INTO	D A
199 200	0226 0228	7F 0A DF FE	MOV R7,#10 DJNZ R7,\$	312 313	02EA 02EA	B4 1E 32	CJNE A,#1EH	ERRSIG	
201 202	022A	C2 B6	ALE PULSE LOW: CLR P3.6 ;MAKE ALE PIN LOW	314 315	02ED 02F0	90 03 00 12 03 7E	MOV DPTR,# CALL MESDI	SIGMES	
203 204	02211 022C	7F 0A	;DELAY 10 MICROS MOV R7,#10	316 317	02F3 02F6	12 03 3E EA	CALL GETBY MOV A,R2		
204 205 206	022C 022E	DF FE	DJNZ R7,\$;ALE MADE HIGH	318 319	02F0 02F7 02F9	F5 31 12 03 3E	MOV 31H,A CALL GETBY	T.F.	
206 207 208	0230 0232	D2 B6 12 04 1C	ALE MADE HIGH SETB P3.6 ; ALE CALL DELAY : DELAY 2 MILLISECONDS	319 320 321	02F9 02FC 02FD	EA F5 30	MOV A,R2 MOV 30H,A		
208 209	0202	12 04 10	CALL DELAY 2 MILLISECONDS ;JNB P3.5,\$;CHECK FOR READY - NOT	321 322	02FD 02FF	P5 30 22	RET RET		

323 0300 0304		SIGMES: .DB "S" "I","G","N","A", "T","U", "R","E"," ","O",",","K",10,13	389 390 391	03A4 03A6 03A8	D0 D0 D0 E0 32	RETPT: POP PSW POP A RETI
0308 0300 324 030F 0313	C 4B 0A 0D 5 45 4E 54 45	.DB "E", 'N", 'T", "E", "R", " ", "A", "D", "D", "R", "E", "S", "S", 10,13,FFH	392 393 394 395	03A9 03AC 03AE	30 99 FD C2 99 F5 99	TOUT: JNB TI,\$ CLR TI MOV SBUF,A
0317 031E 325 031F 326 0322 327 0325 328 0327 329 0327 032E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ERRSIG: MOV DPTR,#SIGMESER CALL MESDISP SJMP \$:HALT ON ERROR SIGMESEE: .DB "E","R", "R", "O", "R", "	396 397 398 398	03B0 03B1 03B5 03B9 03BD 03C1 03C2	22 74 48 49 53 20 49 53 20 41 20 54 45 53 54 0A 0D FF	RET MES: .DB "t", "H", "T", "S", 20H, "I", "S"," ","A", ", "T", "E", "S", "T", 10, 13, 255
330 032I 0331 0335 0339 0331 331 033F 332 0341 333 0343 334 0345 335 0347	41 54 55 52 45 20 48 41 4C 54 0A 0D FF 30 30 FD 55 43 C2 30 71 A9	DB "S","I","G","N","A","T","(I","R","E"," ","H","A","L","T",10,13,FFH GETBYTE: JNB FLAG,\$;read new serial byte MOV A,SER DATA ;DATA IN A CLR FLAG ACALL TOUT CALL ASCL_HEX	400 401 402 403 404 405 406 407 408 409 410	03C2 03C3 03C5 03C7 03C8 03CA 03CB 03CC 03CE	FB 94 0A 40 04 EB 24 37 22 EB 24 30 22	A1: MOV R3,A SUBB A,#0AH JC NUMKEY A-F: MOV A,R3 ADD A,#37H RET NUMKEY: MOV A,R3 ADD A,#30H RET
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A C4 3 54 F0) FA 2 30 30 FD 2 55 43 3 71 A9 1 2 04 25 C 2 30 A 54 0F	SWAP A ANL A,#F0H MOV R2,A JNB FLAG,\$:read new serial byte MOV A,SER DATA ;DATA IN A ACALL TOUT CALL ASCI_HEX CLR FLAG ANL A,#0FH	411 412 413 414 415 416 417 418 418 419	03CF 03D1 03D4 03D6 03D8 03D8 03D8 03DC 03E0 03E1 03E3	C2 B5 90 03 D8 71 7E 80 FE 0D 0A 4F 56 45 52 0A 0D FF D2 B7 74 10	NDT END: CLR P3.5 MOV DPTR,#FINALMES CALL MESDISP SJMP \$ FINALMES: .DB 0DH,0AH,"O","V","E","R",10,13,FFH ERASE: SETB P3.7 MOV A,#10H
347 035(348 0351 349 0354 350 AND SEND 351 0354 352 0362 353 0365 354 0366 355 0366 0355 0366 0364 0364	 FA 22 THE 90 03 66 12 03 7E 22 0D 4F 2E 4B 20 41 54 20 	ORL A.R2 ; SECOND NIBBLE READ AND PACKED MOV R2,A ;DATA BYTE IS IN R2 NOW RET DISPLAY: ;POINTS TO MESSAGE DATA OF PROGRAMMING ADDRESS MOV DPTR.#MESPROG CALL MESDISP RET MESPROG: .DB 0DH,"O",".","K"," ","A","T"," ",10,13,20H,FFH	420 421 422 423 424 425 426 427 428 429 430 431 432	03E5 03E7 03E9 03EB 03ED 03EF 03F1 03F4 03F6 03F8	F5 A0 7F 17 DF FE C2 B7 C2 B6 7D 03 12 04 1C DD FB D2 B6 D2 B7 66 01	MOV P2,A ;OUTPUT TO PORT 2 MOV R7,#17H DJNZ R7,\$;ALE LOW VOLTS HIGE CLR P3.6 ;ALE MOV R5,#3H DEL1: CALL DELAY DJNZ R5,DEL1 SETB P3.6 ;ALE SETB P3.7 ;VOLTS
356 357 358 0372 360 0375 361 0376 362 0371 363 0371 364 365 366 037F 364 365 366 037F 366 037F	75 98 52 75 89 20 75 80 FD 3 D2 8E 22 22 5 E4 9 93	SER_INI2: MOV SCON,#52H MOV TMOD,#20H;20 MOV TH1,#FDDH ;FDH SETB TR1 RET MESDISP: NEXT: CLR A MOVC A,@A+DPTR_	433 434 435 436 437	03FA 03FD 03FF 0401 0405 0409 040D 0411 0415 0419	$\begin{array}{c} 90\ 04\ 01\\ 71\ 7E\\ 21\ F0\\ 45\ 52\ 41\ 53\\ 45\ 52\ 20\ 4E\\ 6F\ 77\ 20\ 53\\ 65\ 6E\ 64\ 20\\ 64\ 61\ 74\ 61\\ 0A\ 0D\ FF \end{array}$	MOV DPTR,#MESER1 CALL MESDISP JMP S6 1 MESER1: .DB "E","R","A","S","E", " ","O", "V","E","R"," ","o",'w",","S","e",'n","d",","A","a","t","a",10,13,PFH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 71 A9 A3 61 7E 75 98 52 75 89 20 75 80 F8 D2 8E	CJNE A,#FFH,OUTP RET OUTP: ACALL TOUT INC DPTR JMP NEXT SER_INIT: MOV SCON,#52H MOV TMOD,#20H;20 MOV TH1,#FSH_FDH SETB TR1	$\begin{array}{r} 438\\ 439\\ 440\\ 441\\ 442\\ 443\\ 444\\ 445\\ 446\\ 447\\ 448\\ 449\end{array}$	041C 041C 041E 0420 0422 0424 0425 0426 0427 0429 0428 042C	7F 0A 7E 46 DE FE 22 C3 FF 94 40 40 05 C3 EF	DELAY: MOV R7,#10 TH: MOV R6,#70 DJNZ R6,\$ DJNZ R7,TH RET ASCI HEX: CLR C MOV R7,A SUBB A,#40H JC ZTO9 CLR C MOV A,R7
380 0394 381 382 382 0395 383 0397 384 0399 385 0390 386 0391 387 03A0 388 03A2	C0 E0 C0 D0 30 98 08 C E5 99 C F5 43 C C2 98	RET SERINT: PUSH A PUSH PSW JNB RI.RETPT MOV A.SBUF MOV 43H,A CLR RI SETB FLAG	$\begin{array}{r} 450 \\ 451 \\ 452 \\ 453 \\ 454 \\ 455 \\ 456 \end{array}$	042D 042F 0430 0431 0432 0434 0435 LINES	94 37 22 C3 EF 94 30 22 ASSEMBLED : 456	SUBB A,#37H RET ZT09: CLR C MOV A,R7 SUBB A,#30H RET .END ASSEMBLY ERRORS: 0
		EFY.	LST.			
250	00 A.D. 8051 CROSS	ASSEMBLER - VERSION 3.41f	19	005D	74.99	INTO LODMON & #991

	2500	A.D. 8051 CROS	SASSEMBLER - VERSION 3.41f	19 20	005D 005D	74 38	INIT LCD:MOV A,#38H
				20	005D	11 8A	ACALL CMD
		INPUT FILENA	AME : EFY.ASM	22	0061	12 00 DD	CALL LONGDELAY
			VAME : EFY.OBJ	23	0064	74 0E	MOV A.#0EH
				24	0066	11 8A	ACALL CMD
1				25	0068	12 00 DD	CALL LONGDELAY
2	0000		.ORG 0000H	26	006B	74 06	MOV A,#06H
3	0000	01 30	RESET: AJMP PROG	27	006D	11 8A	ACALL CMD
4	0030		.ORG 0030H	28	006F	$12\ 00\ DD$	CALL LONGDELAY
5	0030	75 B0 FF	PROG: MOV P3,#FFH	29	0072	74 80	MOV A,#80H
6	0033	75 81 60	MOV SP,#60H	30	0074	11 8A	ACALL CMD
7	0036	115D	ACALL INIT_LCD	31	0076	$12\ 00\ DD$	CALL LONGDELAY
8	0038	7C 10	MOV R4,#10H	32	0079	E5 01	MOV A,01H
9	003A	90 00 4D	MOV DPTR,#MESG	33	007B	11 8A	ACALL CMD
10	003D	74 01	MOV A,#01H	34	007D	$12\ 00\ DD$	CALL LONGDELAY
11	003F	12 00 8A	CALL CMD	35	0080	22	RET
12	0042	$74\ 00$	K1: MOV A,#0H	36	0081	7D FF	DELAY: MOV R5,#FFH
13	0044	93	MOVC A,@A+DPTR	37	0083	00	NOP
14	0045	12 00 A8	CALL LCDWR	38	0084	00	NOP
15	0048	A3	INC DPTR	39	0085	00	NOP
16 17	0049	DC F7	DJNZ R4,K1	40 41	0086	00 DD FE	NOP D DVZ D5 \$
17	004B	80 FE	SJMP \$	41 42	0087 0089	DD FE 22	DJNZ R5,\$ RET
18	004D	$45\ 6C\ 65\ 63$	MESG: DB "E","I","e","c","t","r","o","n","i","c", "F","o","r","Y","o","u"	42	0089 008A	C2 B2	CMD: CLR P3.2
	0051	74 72 6F 6E	r , 0 , r , 1 , 0 , u	43 44	008A 008C	C2 B2 C2 B3	CLR P3.2 CLR P3.3
	0051	69 63 46 6F		44 45	008C	C2 B3 C2 B4	CLR P3.4
	0055	72 59 6F 75		40	0090	F5 90	MOV P1.A
	0000	12 00 01 10		40	0000	1000	110 / 1 1,11

47	0092	D2 B4	SETB P3.4	74	00BB	12 00 C7	CALL BUSY	
48	0094	00	NOP	75	00BE	11 81	CALL DELAY	
49	0095	00	NOP	76	00C0	11 81	CALL DELAY	
50	0096	00	NOP	77	00C2	11 81	CALL DELAY	
51	0097	00	NOP	78	00C4	11 81	CALL DELAY	
52	0098	00	NOP	79	00C6	22	RET	
53	0099	00	NOP	80	00C7	C2 B2	BUSY: CLR P3.2	
54	009A	00	NOP	81	00C9	D2 B3	SETB P3.3	
55	009B	C2 B4	CLR P3.4	82	00CB	C2 B4	CLR P3.4	
56	009D	11 81	CALL DELAY	83	00CD	D2 B4	SETB P3.4	
57	009F	11 81	CALL DELAY	84	00CF	20 97 FD	JB P1.7,\$	
58	00A1	11 81	CALL DELAY	85	00D2	C2 B4	CLR P3.4	
59	00A3	11 81	CALL DELAY	86	00D4	11 81	CALL DELAY	
60	00A5	11 81	CALL DELAY	87	00D6	11 81	CALL DELAY	
61	00A7	22	RET	88	00D8	11 81	CALL DELAY	
62	00A8	C2 B2	LCDWR:CLR P3.2	89	00DA	11 81	CALL DELAY	
63	00AA	C2 B3	CLR P3.3	90	00DC	22	RET	
64	00AC	C2 B4	CLR P3.4	91	00DD	7E FF	LONGDELAY: MOV R6,#FFH	
65	00AE	D2 B2	SETB P3.2	92	00DF	00	L1: NOP	
66	00B0	F5 90	MOV P1,A	93	00E0	00	NOP	
67	00B2	D2 B4	SETB P3.4	94	00E1	00	NOP	
68	00B4	00	NOP	95	00E2	00	NOP	
69	00B5	00	NOP	96	00E3	00	NOP	
70	00B6	00	NOP	97	00E4	DE F9	DJNZ R6,L1	
71	00B7	00	NOP	98	00E6	22	RET	
72	00B8	00	NOP	99	00E7		END	
73	00B9	C2 B4	CLR P3.4		LINES AS	SEMBLED : 99	ASSEMBLY ERRORS : 0	

LASER-BASED COMMUNICATION LINK

ANJAAN NANDI

n optical communication system for inter- and intra-building com muni-cations, closed-circuit TVs, PC LANs, etc can be built using the following three basic components:

1. A light-emitting element, which could be a laser diode or light-emitting diode (LED)

2. Transmission media, such as optical fibre or free space

3. A light-receiving element, which could employ avalanche photodiode, PIN photodiode (PIN-PD) or any other light sensor

Since the communications performance of the system depends on the overall characteristics of the above elements, the characteristics of the individual elements should match.

Here we present a one-/two-way optical communications system using a short-wavelength visible laser diode (say, RLT6505 or the laser module of a laser pointer) as the light-emitting element, free space as the transmission media and a light-dependent resistor as the lightreceiving element. This system is ideal for speech communication between two adjacent offices or between homes on the opposite sides of a road.

The system has the following features: 1. Communication is possible up to several hundred metres. The communication range can be extended up to several kilometers by using a parabolic light reflector.

2. It transmits high-quality audio.

3. It ensures privacy, since a laser beam is very narrow and the link is virtually impossible for someone to tap into.

4. Alignment/orientation of the transmitter and the receiver is easy because the laser beam is visible.

It also offers the following facilities:

1. When someone intercepts the beam, the communication link breaks and the receiver

circuit provides an audio-visual indication of the interruption by sounding an alarm and incrementing the count of a 7-segment display.

2. The person at the receiver end is alerted of an impending audio message

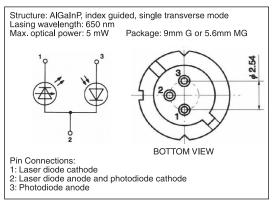


Fig. 1: Technical data of RLT6505G visible wavelength laser diode

through a buzzer sound by depressing a call switch at the transmitter end.

3. The voice output from the microphone in the transmitter is reproduced through a loudspeaker in the receiver section after suitable amplification.

Opto-Electrical Characteristics of RLT6505G (Tc=25°C)

Characteristic	Symbol	Test condition	Min.	Тур.	Max.	Unit
Optical output power	P	Kink free	_	_	5	mW
Threshold current	I _{th}	-	20	30	40	mA
Operation current	I	P _o =5 mW	-	45	70	mA
Operating voltage	V _{op}	P_=5 mW	-	2.2	2.7	V
Lasing wavelength	I _p	P_=5 mW	-	650	655	nm
Beam divergence	q_1	P_=5 mW	5	8	11	0
Beam divergence	\mathbf{q}_2	P_=5 mW	25	31	37	0
Astigmatism	As	P_=5 mW, NA=0.4	-	11	-	μm
Monitor current	I	$P_0=5 \text{ mW}, V_r=5V$	-	10	-	μA

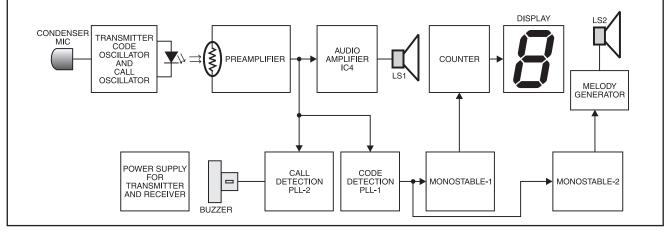


Fig. 2: Block diagram of the laser-based system for one-way speech communication

System description

Fig. 2 shows the block diagram of the laser-based system for one-way speech communication. It comprises transmitter, receiver and a common DC power supply section. The power supply section, at one end of the link, provides regulated 6V to the receivertransmitter circuit. For twoway communication, you need to use an identical system, with the positions of the receiver and the transmitter reversed, with this system.

In the transmitter, the in-

tensity of the laser beam is modulated by the output of an always-on code oscillator (operating at 10-15 kHz). Using a pushto-on switch, the tone oscillator (operating at 1-2 kHz) is momentarily activated to alert the person at the receiver end before starting a voice communication using the microphone.

The receiver receives the intensitymodulated light signals through a light sensor and outputs the code and 1kHz tone/voice.

The circuit for detecting the code signal is built around a phase-locked loop (PLL-1). The absence of the code signal

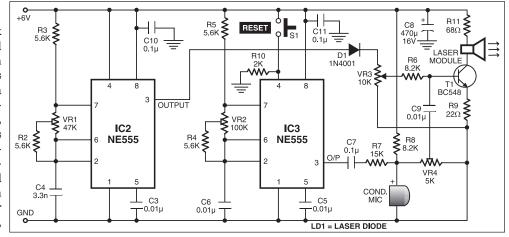


Fig. 3: Transmitter circuit

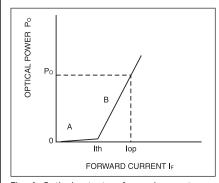
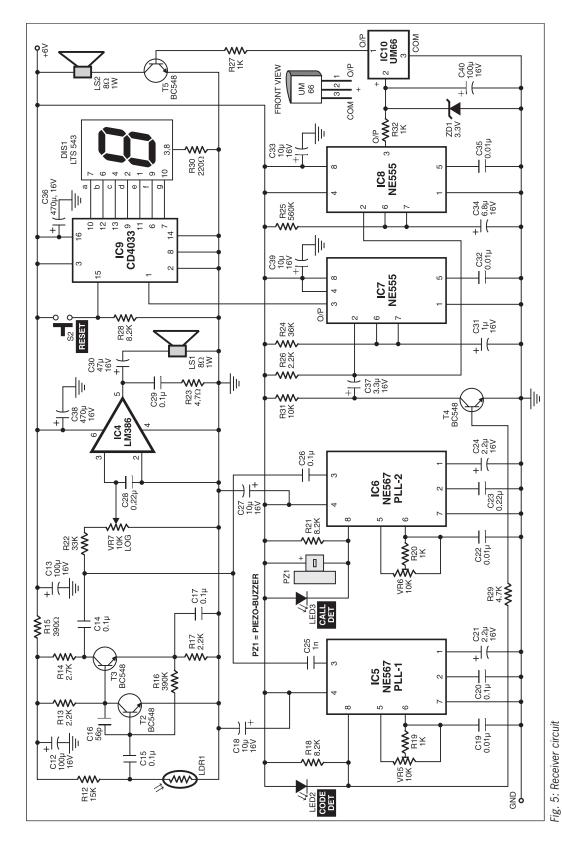


Fig. 4: Optical output vs forward current characteristics of laser diode

PART	S LIST
Semiconductors: IC1 - 7806 5V regulator IC2, IC3, IC7, IC8 - 555 timer IC4 - LM386 low-power audio amplifier IC5, IC6 - NE567 phase-locked loop IC9 - CD4033 decade counter/ 7-segment decoder - 1000000000000000000000000000000000000	$\begin{array}{cccc} R31 & & -10\mbox{-kilo-ohm} \\ R30 & & -220\mbox{-ohm} \\ VR1 & & -47\mbox{-kilo-ohm preset} \\ VR2 & & -100\mbox{-kilo-ohm preset} \\ VR5, VR6 & & -10\mbox{-kilo-ohm potmeter} \\ VR3 & & -10\mbox{-kilo-ohm potmeter} \\ VR4 & & -5\mbox{-kilo-ohm potmeter} \\ VR7 & & -10\mbox{-kilo-ohm potmeter} (\log.) \end{array}$
IC10 - UM66 melody generator BR1 - IA bridge rectifier D1 - 1N4001 rectifier diode ZD1 - 3.3V zener diode LED1—LED3 - 5mm red LED DIS1 - LTS543 common-cathode display	Capacitors: C1 - 2200µF, 25V electrolytic C2, C12, C13, C40 - 100µF, 16V electrolytic C3, C5, C6, C9, C19, - 0.01µF ceramic disk C4, - 3.3nF ceramic disk C7, C10, C11, C14,
Resistors (all $\frac{1}{4}$ -watt, $\pm 5\%$ carbon, unless stated otherwise): R1, R19, R20, R27, R32 - 1-kilo-ohm R2-R5 - 5.6-kilo-ohm R6, R8, R18, R21, R28 - 8.2-kilo-ohm R7, R12 - 15-kilo-ohm R9 - 22-ohm R10 - 2-kilo-ohm R11 - 68-ohm R13, R17, R26 - 2.2-kilo-ohm R14 - 2.7-kilo-ohm	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
R15 - 390-ohm R16 - 390-kilo-ohm R22 - 33-kilo-ohm R23 - 4.7-ohm R15 - 390-ohm R24 - 36-kilo-ohm R25 - 560-kilo-ohm R29 - 4.7-kilo-ohm	S1, S2 - Push-to-on tactile switch LS1, LS2 - 8-ohm, 1W loudspeaker Mic - Condenser microphone PZ1 - Piezobuzzer X1 - 230V AC primary to 0-9V, 500mA secondary trans- former - Laser module

indicates interception of the laser beam and activates an audio-visual warning at the remote receiver. For detecting the 1kHz call/tone signal, another phaselocked loop (PLL-2) is used. The call detection is indicated by a buzzer sound and an LED.

The transmitter circuit


The transmitter circuit (shown in Fig. 3) consists of a code oscillator, tone/call oscillator, condenser microphone and an AF mixer stage.

The code oscillator comprising IC NE555 (IC2) is wired as an astable multivibrator operating at 10-15 kHz frequency. The actual oscillation frequency is decided by the timing components including resistors R2 and R3, preset VR1 and capacitor C4. We can adjust VR1 to vary the oscillation frequency to match with the centre frequency of PLL-1 at the remote receiver end. The output of IC2 is fed to the base of mixer transistor T1 via diode D1 and levelcontrol potmeter VR3 and resistor R6.

Similarly, the tone/call oscillator comprising IC NE555 (IC3) is wired as an astable multivibrator to provide a 1-2kHz tone when tactile switch S1 is depressed. We can adjust VR2 to change the tone frequency to match with the centre frequency of PLL-2 at the remote receiver end. Resistor R10 is used to pull reset pin 4 of IC3 low when switch S1 is open.

The output of IC3 is also coupled to the base of the mixer transistor via capacitor C7, resistor R7, preset VR4 and capacitor C9. Preset VR4 is connected across the condenser microphone to adjust the audio signals when someone speaks into the microphone. Preset VR4 is used to vary the biasing signals.

The outputs of IC2 and IC3 and

terials to produce distinctive wavelengths. Semiconductor laser diodes produce a much higher output power and highly directional beams compared to the LEDs. The laser must be operated with a large drive current to get a high density of ready-to-combine electrons at the p-n junction. Fig. 4 shows the optical output vs forward current characteristics of a laser diode. We can divide it into spontaneousemission region A and laser-oscillation region B. The current required for starting oscillations is called the threshold current (I_{tb}) , while the forward (excitation) current necessary for maintaining the diode's specified optical output is called its operating $current (I_{op}).$

For the 5mW laser shown in Fig. 1, the typical values of threshold and operating currents are 30 mA and 45 mA, respectively. Keychain laser pointers available in the market have a power output of about 5 mW with forward current limited to 20 to 25 mA. Thus, a laser diode module of keychain-type visible laser pointer may be used for this transmitter circuit.

The receiver

The receiver (Fig. 5) consists of a light sensor, a signal preamplifier, audio amplifier,

voice signals are mixed by transistor T1 to drive the laser-pointer LED. The mixer output modulates the intensity of light signals emitted by the laser diode module in accordance with the level of the code oscillator and tone or audio signals available at the base of the mixer transistor.

Laser. The laser diodes can be constructed using a variety of different ma-

code detector (with audio/visual alarm) and call/tone detector with buzzer indication. It uses a light-dependent resistor (LDR) as the light sensor. The resistance of LDR varies depending on the incident

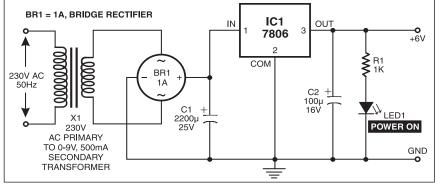
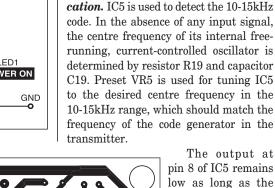



Fig. 6: Power supply circuit

components.

frequency of the band and output delay

are independently determined by external

Link continuity/discontinuity indi-

pin 8 of IC5 remains low as long as the transmitted code is detected by IC5. As a result, LED1 lights up to indicate continuity of the optical link/path for communication.

When the laser beam is interrupted due to any reason, the output at pin 8 of IC5 goes high to drive transistor T4 and its collector voltage falls to trigger monostable circuits built around IC7 and IC8 (each NE555), respectively. As a result, the output at pin 3 of these ICs goes high for the predetermined time period. The time periods of timers IC7

and IC8 depend on the values of resistor-capacitor combinations R26-C31 and R25-C34, respectively. Since output pin 3 of IC7 is connected to pin 1 of decade counter CD4033 (IC9), it provides a clock pulse to counter IC9 to increment its count, indicating interruption of the laserlight beam. The current count is shown on a 7-segment display (DIS1) connected to the 7-segment decoded outputs of counter IC9. Resistor R30 is used as a currentlimiting resistor in the common-cathode path of DIS1.

For frequent interruptions of the light beam, the output of decade counter IC9 keeps incrementing the count. After the count reaches '9,' the next interruption resets the counter and it starts afresh. The counter/display can also be reset manually by momentarily depressing press-to-on

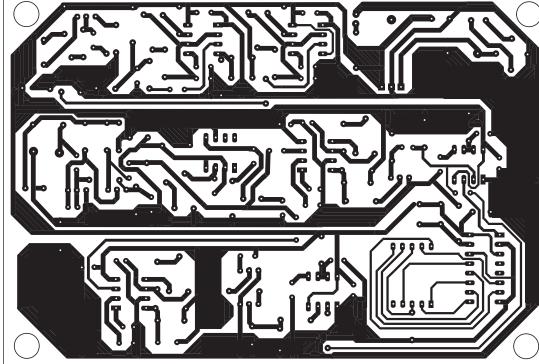


Fig. 7: Actual-size, single-side PCB layout of one-way speech communication circuit

light intensity, which, in turn, is a function of its modulation by the mixed output of code and tone or audio signals at the transmitter mixer stage. The output of the LDR sensor is amplified by a two-stage transistorised preamplifier.

The preamplifier output is coupled (via DC blocking capacitor $\rm C14)$ to:

1. The audio power amplifier built around IC LM386

2. Phase-locked loop (PLL-1) IC5 $\,$

3. Phase-locked loop (PLL-2) IC6

The preamplifier output is fed to input pin 3 of audio power amplifier LM386 (IC4) through volume-control potmeter VR7. Capacitor C28 bypasses the noise signal and higher-order frequencies representing the code signal (10-15 kHz). The audio output (comprising voice or tone signals) from pin 5 of IC4 is coupled to loudspeaker LS1 through capacitor C30. A snubber network comprising capacitor C29 and resistor R23 is used for output stability. IC LM386 is a low-voltage audio power amplifier. Its gain is internally set to 20 to keep external part count low.

The preamplifier output, as stated earlier, is also connected to phase-locked loop IC5 and IC6 (each NE567) through capacitors C25 and C26, respectively. IC NE567 is a highly stable phase-locked loop with synchronous AM lock detection and power output circuitry. It is primarily used as a frequency decoder, which drives a load whenever a sustained frequency falling within its detection band is present at its self-biased input. The centre

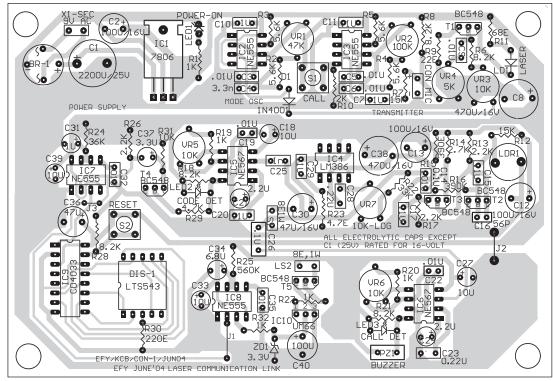


Fig. 8: Component layout for the PCB

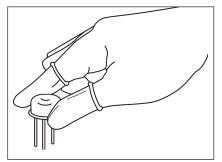


Fig. 9: Laser diode handling

switch S2.

As stated earlier, IC7 and IC8 are triggered simultaneously. Thus with each interruption of the light beam, the output of IC8 is pulsed high for a predetermined time to provide around 3V (determined by the output of zener diode ZD1) to melody IC UM66 (IC10). Thus IC10 generates a melodious tune whenever the light beam is interrupted. The output of IC10 is amplified by transistor T5 to drive loudspeaker LS2.

For initiating a call, the person at the transmitter end depresses switch S1 to alert the remote-end person of an impending voice communication. Thus the modulated light output from the transmitter contains 1-2kHz tone component in addition to the 10-15kHz code oscillator output. After detection and preamplification, 1-2kHz tone is decoded by PLL-2 circuit built around IC6, whose centre frequency is adjusted to match the frequency of tone/call oscillator in the transmitter.

IC6 is thus used as the call detector. Resistor R20 and capacitor C22 decide the centre frequency of its inbuilt oscillator in the absence of an input signal. Capacitors C23 and C24 serve as lowpass filter and output filter, respectively. Preset VR6 is used for tuning the inbuilt oscillator.

Thus when the 1-2kHz tone component is detected by IC6, its output pin 8 goes low to light up LED3 as also sound piezobuzzer PZ1 to alert the receiver-end person. Since the 1-2kHz tone component at the output of the preamplifier also passes through LM386 power amplifier, the tone is heard from loudspeaker LS-1 as well.

Voice communication. For voice communication, the person at the transmitter end speaks into the mike while call switch S1 is open. The modulated light beam contains the 10-15kHz code frequency and voice components. After demodulation at the receiver, the 10-15kHz code component is largely bypassed by capacitor C28 at the input of LM386, while the voice component (up to 3400 Hz) is attenuated insignificantly. Thus speech is reproduced at the output of LM386 via loudspeaker LS1. The code component (10-15 kHz) is detected by PLL IC5 signifying uninterrupted light path which is indicated by LED2, as explained earlier.

Construction

Fig. 6 shows the power supply circuit. The AC mains is stepped down by transformer X1 to deliver a secondary output of 9V AC at 500 mA. The transformer output is rectified by bridge rectifier BR-1. Capacitor C1 bypasses ripple and smoothes the rectifier output before regulation by 6V regulator

 $7806\ (IC1).\ LED1\ indicates\ power-on\ state. Resistor R1 acts as the current-limiting resistor for LED.$

An actual-size, single-side PCB layout of the laser-based one-way speech communication circuit (comprising the transmitter, receiver and power supply units) is shown in Fig. 7 and its component layout in Fig. 8. For two-way (duplex) communication, you will need two PCBs.

Precautions

Take the following precautions while handling laser diodes:

1. For observing laser beams, always use safety goggles that block laser beams. Laser diodes up to 5mW output are ranked as Class III A products.

2. Laser diodes use gallium-arsenide (GaAs), which is potentially hazardous to the human body. Therefore, never crush, heat to the maximum storage temperature or put the laser diode in your mouth.

3. Semiconductor laser diodes are highly sensitive to electrostatic discharge, so be extremely careful while handling these. Don't touch the leads of the laser diode directly. Wear cotton gloves or ESD-protection gloves and handle the laser diode as shown in Fig. 9. \Box

DEVICE SWITCHING USING PASSWORD

CHARLS JOSEPH

ere's a password-based device switching circuit that stops un authorised persons from switching on/off the devices. The circuit can switch on only one device at a time, out of a maximum of nine connected devices. To switch on/off the device, you need to enter a correct 4-digit password via the keypad.

Fig. 1 shows the block diagram of the device switching system using password. It mainly comprises a keypad, DTMF tone generator, DTMF decoder, demultiplexer and password circuit. Four DIP switches (DIP1 through DIP4) are used to set up the password.

The circuit

Fig. 2 shows the circuit for device switching using password. It can be divided into two sections, namely, the transmitter section and the DTMF decoder-and-password setup section.

The DTMF decoder-and-password setup unit is connected to the devices to be controlled. The DTMF generator (transmitter) is connected to the rest of the circuit through a two-core cable to enable device switching from a remote location.

1. The transmitter section. The transmitter circuit is built around DTMF encoder IC UM91214B (IC1). The DTMF encoder is commonly used as a dialler IC in telephone sets to generate DTMF tones. For its time base, IC UM91214B requires a 3.58MHz quartz crystal, which is connected between pins 3 and 4 of IC1 to form an internal oscillator. The oscillator output is converted into an appropriate DTMF signal through frequency division and multiplexing by the control logic of IC1

A telephone type keypad is connected to ICI via 4-row and 3-column lines. Pins 15 through 18 of IC1 are row pins and pins 12 through 14 are column pins. Of the twelve keys on the keypad, we've used keys '1' through '9', '0' and '*.' The '#' key is not used here. Keys '1' through '9' are used for controlling the device, key '0' is used to switch off the device and key "*' is used to reset the circuit.

As stated earlier, we've used here a telephone-type keypad (also used for cash/debit card purchases) with twelve push-to-on switches to enter the password to control the devices.

IC11-IC13	- CD4072 dual 4-input OR				
IC14, IC15 D1-D9 T1-T9 ZD1	gate - 74LS04 hex inverter - 1N4007 rectifier diode - BC548 npn transistor - 3.3V zener diode				
Resistors (all ¼-watt, ±5% carbon, unless stated otherwise):					
R1 R2-R4 R5 R6-R14	- 330-ohm - 100-kilo-ohm - 330-kilo-ohm - 4.7-kilo-ohm				
<i>Capacitors:</i> C1 C2, C3 C4, C5	 10µF, 10V electrolytic 39pF ceramic disk 0.01µF ceramic disk 				
Miscellaneou X _{TAL1} , X _{TAL2} S1 DIP1-DIP4	 3.58MHz crystal oscillator On/off switch				

PARTS LIST

demultiplexer

decoder

register

gate

- IC UM91214B DTMF dialler

- 74LS154 4-to-16-line decoder/

- CD4015 dual 4-bit static shift

- CD4030 quad Exclusive-OR

7408 quad 2-input AND gate

- KT3170/MM8870 DTMF

Semiconductors:

IC1 IC2

IC3

IC4, IC5

IC6-IC9

IC10

When you press any key on the keypad, a unique pair of sinewave tones is

> produced, which is called dual-tone multifrequency (DTMF). These tone pairs lie within the audible frequency band of 300 to 2400 Hz and are chosen such that interference with any other frequency existing in the normal speech simultaneously is minimised. To minimise interference, a lower frequency from the rows (697 Hz, 770 Hz, 852 Hz or 941 Hz) is paired with a higher frequency from the columns (1209 Hz, 1336 Hz, 1477 Hz or 1633 Hz).

> Thus a valid DTMF tone is the sum of a lower-frequency tone (697 Hz, 770 Hz, 852 Hz or 941 Hz) and

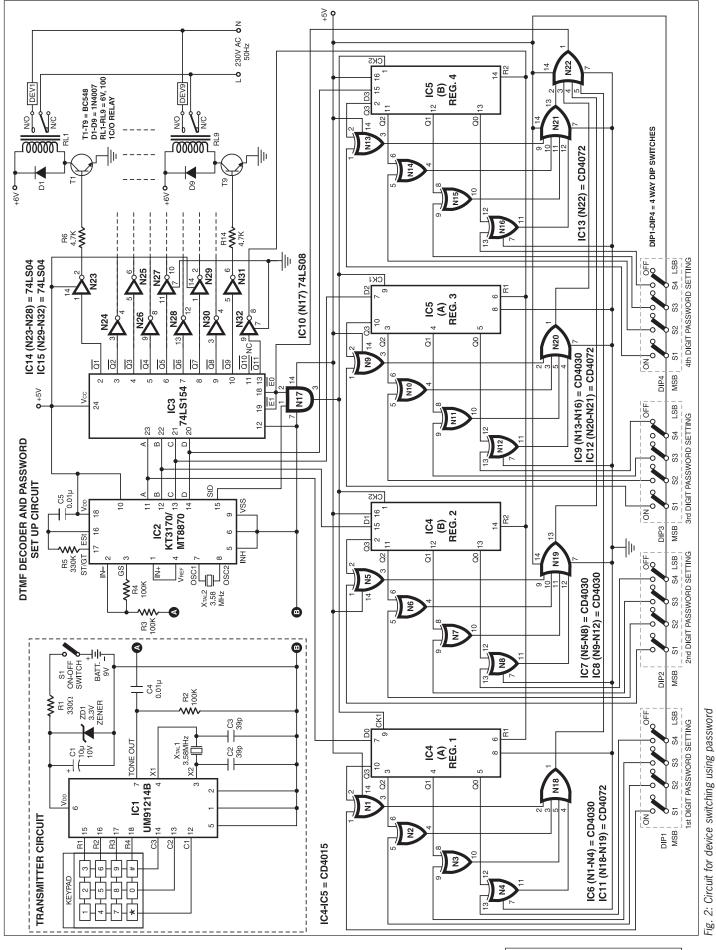



Fig. 1: Block diagram of the device switching system using password

a higher-frequency group (1209 Hz, 1336 Hz, 1477 Hz or 1633 Hz). The DTMF dialling scheme allows 16 unique combinations of tones (codes), of which eleven codes have been used here. DTMF tones are so chosen that none of the tones is harmonic of the other tones. Therefore there is no chance of distortion caused by harmonics. Each tone is sent as long as a key remains pressed.

The DTMF coding scheme simplifies decoding because the composite DTMF signal may be separated using a bandpass filter into single frequency components, which may be handled individually.

If you press any key on the keypad, the corresponding DTMF tone pair output is available at pin 7 of the DTMF encoder (IC1). The tone output of IC1 is used as the input for the DTMF decoder (IC2).

2. The DTMF decoder. DTMF decoder KT3170/ MT8870 (IC2) is used here. It uses a 3.58MHz crystal

for providing clock for its internal circuitry. The DTMF decoder decodes the signal received from IC1 and provides a binary output corresponding to the key pressed in the transmitter circuit.

When you press any key on the keypad, IC2 receives a valid DTMF tone pair and decodes it into the corresponding 4-bit binary output, which is available at its pins 11 through 14. At the same time, its delayed steering output (StD) pin 15 goes high on receiving the tone pair, pulsing the clock pins of IC4 and IC5. The StD pulse is thus used to shift the data in dual 4-bit static shift registers of IC4 and IC5.

3. *Password circuit.* The password circuit is built around two dual 4-bit static shift registers (IC4 and IC5) and Ex-OR ICs (IC6 through IC9). IC6 through IC9 check whether the entered password is correct. The shift registers store the entered password in binary form. The stored number is cross-checked with the preset password with the help of Ex-OR ICs. The password is set by sliding the

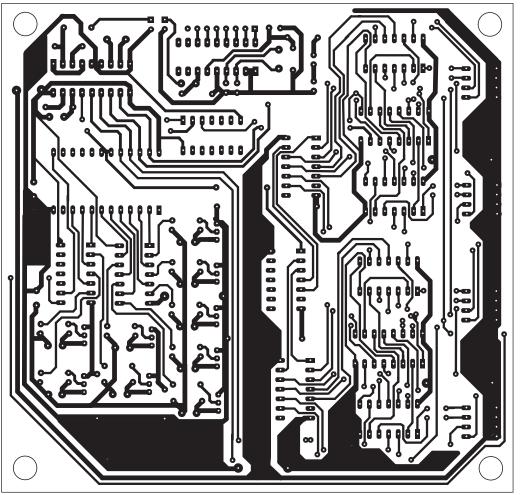


Fig. 3: Actual-size, single-side PCB for the circuit in Fig. 2

respective DIP switches DIP1 through DIP4, which are connected to the inputs of XOR gates.

When you press any key on the keypad, its binary code is output by decoder IC2. Bit one of the binary code is fed to shift register IC4(A), the second bit is fed to shift register IC4(B), the third bit is fed to shift register IC5(A) and the fourth bit is fed to shift register IC5(B). The clocks for IC4 and IC5 are generated by StD pin 15 of decoder IC2 via AND gate N17. The StD clocks shift data into shift registers IC4 and IC5.

The password in decimal numbers is set through the keypad. The corresponding binary numbers are fed through the DIP switches. The data across the outputs of IC4 and IC5, along with the password set by DIP switches, should result into a low output across the outputs of IC11 through IC13.

Once all the four digits of the

password are entered, the 4-bit static data is available at the outputs of the shift registers (IC4 and IC5).

Password setting (refer table). Suppose you want to set up the password 9765. Press digits 9, 7, 6 and 5 sequentially and the password gets stored into shift registers IC4 and IC5 in binary format.

For the first binary digit (A bit), data stored into IC4(A) is 1101, so you have to set 1101 through switch DIP1 by making its S1 on (1), S2 on (1), S3 off (0) and S4 on (1).

For the second binary digit (B bit), data stored into IC4(B) is 0110, so

Password Setting Example

				0	-
Keypad	Decoder output				Register output
No. Seq.	D	С	В	А	
9	1	0	0	1	Q3
7	0	1	1	1	Q2
6	0	1	1	0	Q1
5	0	1	0	1	Q0
Reg. No.	4	3	2	1	

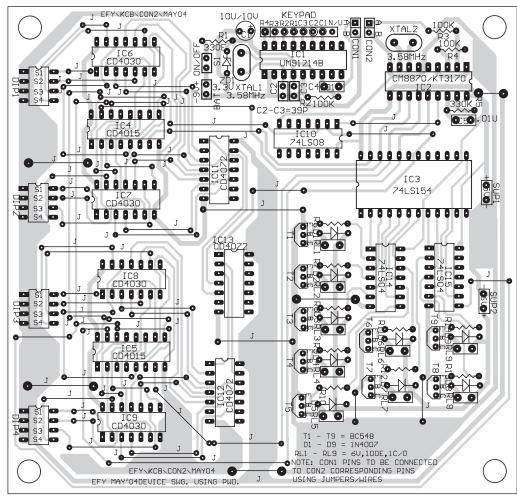


Fig. 4: Component layout for the PCB in Fig. 3

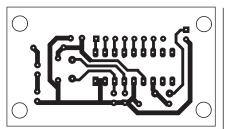


Fig. 5: PCB layout for transmitter

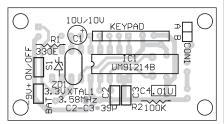


Fig. 6: Component layout for transmitter PCB

you have to set 0110 through switch DIP2 by making its S1 off, S2 on, S3 on and S4 off.

For the third binary digit (C bit), data stored into IC5(A) is 0111, so you have to

set 0111 through switch DIP3 by making its S1 off, S2 on, S3 on and S4 on.

For the fourth binary digit (D bit), data stored into IC5(B) is 1110, so have to set 1110 through switch DIP4 by making its S1 on, S2 on, S3 on and S4 off.

Now your password is set and the circuit is ready to control the devices.

Password checking. IC6 through IC9 are used to check the password. If the password fed through DIP switches is correct, all the outputs of IC6 through IC9 go low and these are ORed by dual 4-input OR gates IC11 and IC12. Thus the outputs of gates N18 through N21 are low. The outputs of IC11 and IC12 are fed to IC13.

4. Enabling/disabling demultiplexer. The password is correct means that the inputs of gate N22 are low as these are connected to the outputs of gates N18 through N21. As a result, the output of gate N22 goes low, which enables the demultiplexer (IC3) for switching the appliance. Since the output of gate N22 is also connected to pin 2 of gate N17, it disables the clock signals of IC4 and IC5 at the same time.

If the password is wrong, the output of any one of gates N18 through N21 goes high. As a result, the output of gate N22 also goes high, which disables the demultiplexer (IC3). Since the output of gate N22 is also connected to pin 2 of gate N17, it enables the clocks signals of IC4 and IC5 at the same time. As a result, the appliance cannot be controlled.

5. Appliance on/off control circuit. The first four decimal digits you enter through the keypad form the password. Pressing the fifth decimal digit on the keypad switches on the device. Note that a particular device can be turned on only if you enter the corresponding decimal number on the keypad as the fifth number; for example, if you want to turn on device No. 1, press digit '1' on the keypad. Digit '0' turns off the device. Key '*' resets the circuit.

Suppose the 4-digit password you entered is correct. Now if you press '9,' which is the fifth digit entered by you, the respective device No. 9 turns on via relay RL9 and inverter N31. When you further press '0' key, which is the sixth key pressed by you, $\overline{Q10}$ output of IC3 goes low and device No. 9 turns off. When you press the '*' key, the $\overline{Q12}$ output of IC3 goes low and the circuit resets via inverter N32.

Fabrication

An actual-size, single-side PCB for the device switching circuit comprising both the transmitter (encoder) and the decoder (including password setting circuitry) is shown in Fig. 3 and its component layout in Fig. 4. However, if the transmitter circuit is to be used from a remote location, it needs to be separated. To meet this requirement, a separate PCB for the transmitter circuit is given in Fig. 5 and its component layout in Fig. 6. \Box

REMOTE-CONTROLLED SOPHISTICATED ELECTRONIC CODE LOCK

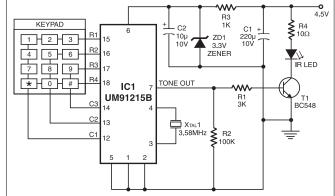
ARUP KUMAR SEN

ocking up valuables is a common practice to protect them from thieves. Various types of locks have been built for greater security. Among these is an electronic code lock, which ensures additional security by demanding a secret number (code) for opening the lock. Different types of circuits using different techniques have been developed for entering the code and its consequent processing.

Here's a sophisticated electronic code lock using the dual-tone multi-frequency (DTMF) signalling technique. The DTMF signalling technique improves signal readability even in a noisy environment.

This code lock has the following features:

1. The standard 12-digit telephone


keypad is used for inputing the code.

2. The code here comprises only two digits. For greater security, the circuit can be modified to accommodate up to nine digits. However, this will require additional components.

3. The opener (operator) gets only two chances to input the code

number for opening a lock. However, there is no limitation on closing the lock.

4. Two separate relays are provided:

only two chances Fig. 2: Circuit of DTMF signal generator and transmitter

re | Relay A is used for opening the lock and relay B is used for closing the lock. The same code number is used for gaining access to the circuit for acti-

vating any of the relays.

Principle

When you press any key on the DTMF encoder, a DTMF signal is generated, which is first converted into a 4-bit equivalent binary/hexadecimal number by the DTMF decoder and then stored in a 4-bit latch. The two numbers generated due to pressing of two keys in sequence are stored in two different latches. The two latched numbers as a whole form the higher and lower nibbles of an 8-bit number.

Using a magnitude comparator, the resulting number is compared with another 8-bit number (code) applied to the comparator through two thumbwheel switches. If the two

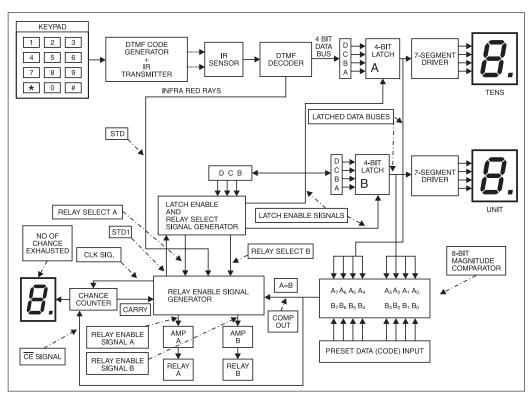


Fig. 1: Block diagram of remote-controlled sophisticated electronic code lock

numbers match, the result of comparison is logic 1, which would allow the operator to switch on a relay by pressing a particular key from the keypad. The relay contacts would then activate a motor or a solenoid to open/close the door. In case the numbers entered via keypad and thumbwheel switches don't match, pressing that very key would only advance a counter to decrease the allowed number of maximum chances for inputing the correct code. Once the maximum number of allowed attempts is over, the chance counter disables the input system, so pressing any key doesn't have any effect over the relays used for opening and closing the lock until and unless the chance counter is reset and correct code is entered

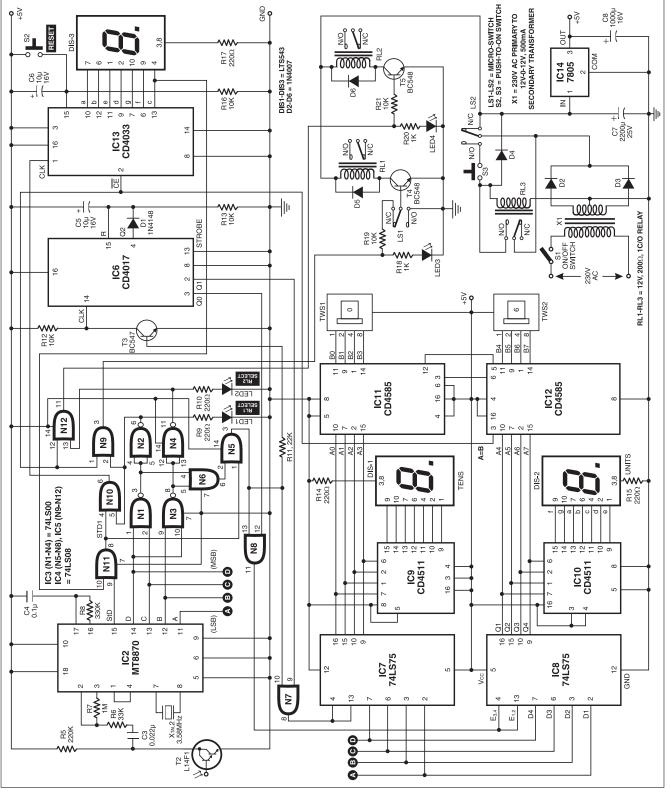


Fig. 3: The receiver, chance counter and relay drive circuit

	PARTS LIST
Semiconductors:	
IC1 IC2	- UM91215B DTMF dialler - MT8870 DTMF decoder 741 S00 guad NAND gata
IC3 IC4, IC5 IC6	 74LS00 quad NAND gate 74LS08 quad AND gate CD4017 decade counter
IC7, IC8 IC9, IC10	 74LS75 4-bit bistable latch CD4511 BCD-to-7-segment decoder/driver
IC11, IC12	- CD4585 4-bit magnitude com- parator
IC13	- CD4033 7-segment decoder/ driver
IC14 T1, T4, T5 T2	- 7805 +5V regulator - BC548 npn transistor - L14F1 phototransistor
T3 ZD1	 BC547 npn transistor 3.3V zener diode
D1 D2-D6 DIS1-DIS3	 1N4148 switching diode 1N4007 rectifier diode LTS543 common-cathode 7-seg-
LED1, LED3 LED2, LED4	ment display - Green LED - Red LED
	- IR LED watt, ±5% carbon, unless stated otherwise):
R1 R2 R3, R18, R20 R4 R5	- 3-kilo-ohm - 100-kilo-ohm - 1-kilo-ohm - 10-ohm - 220-kilo-ohm
R6 R7 R8 R9, R10, R14,	- 33-kilo-ohm - 1-mega-ohm - 330-kilo-ohm
R15, R17 R11 R12, R13, R16,	- 220-ohm - 22-kilo-ohm
R19, R21 Capacitors:	- 10-kilo-ohm
C1 C2 C3 C4 C5, C6 C7 C8 <i>Miscellaneous:</i>	 220µF, 10V electrolytic 10µF, 10V electrolytic 0.022µF ceramic disk 0.1µF ceramic disk 10µF, 16V electrolytic 2200µF, 25V electrolytic 1000µF, 16V electrolytic
Miscelaneous: S1 S2, S3 LS1, LS2 TWS1, TWS2 RL1-RL3 X1	 On/off switch Push-to-on switch Microswitch Thumbwheel switch 12V, 200-ohm, 1C/O relay 230V AC to 12V-0-12V, 500mA secondary transformer Reversible motor

via keypad.

Circuit description

Fig. 1 shows the block diagram of remote-controlled sophisticated electronic code lock. The entire circuit can be divided into two sections:

1. DTMF signal generator and transmitter

2. DTMF signal receiver, comparator and output relay driver

The DTMF signal generator and transmitter section is shown in Fig. 2.

Telephone tone/pulse dialler IC UM91215B is used for generating the DTMF signals. A DTMF signal is the algebraic sum of two different audio frequencies, and can be expressed as follows:

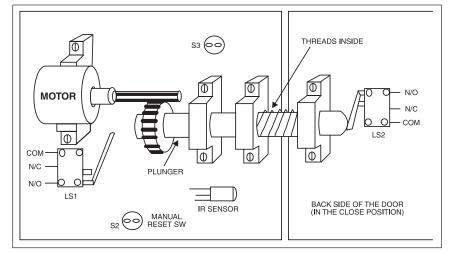
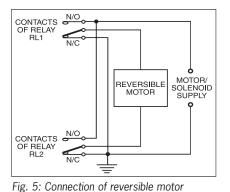



Fig. 4: Mechanical arrangement

these are not the harmonics of each other. The frequencies associated with various keys on the keypad are given in Table I.

From Table I it is clear that if key 3 is pressed, 1477 Hz from the high-frequency group and 697 Hz from the low-frequency group produce the corresponding DTMF signal.

The DTMF signals generated due to pressing of different keys modulate the infrared (IR) rays generated by an IR LED. Transistor T1 (BC548) acts as the modulator. Normally, the LED is off. But

TABLE I
Frequencies Associated With Various Keys on the Keypad

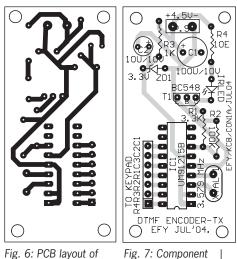
_			-		
	High-frequency group				
		1209 Hz	1336 Hz	1477 Hz	1633 Hz
Low-frequency group	697 Hz	1	2	3	А
	$770~{ m Hz}$	4	5	6	В
	$852~\mathrm{Hz}$	7	8	9	C
	941 Hz	*	0	#	D, I

 $\begin{array}{l} f(t){=}A.{\rm Sin}(2pf_{\rm a}t) + B.{\rm Sin}(2pf_{\rm b}t)....(1) \\ {\rm where} \ f_{\rm a} \ {\rm and} \ f_{\rm b} \ {\rm are} \ {\rm two} \ {\rm different} \\ {\rm audio} \ {\rm frequencies}, \ {\rm with} \ {\rm A} \ {\rm and} \ {\rm B} \ {\rm as} \ {\rm their} \\ {\rm respective} \ {\rm peak} \ {\rm amplitudes}, \ {\rm and} \ {\rm |} \ {\rm is} \ {\rm the} \\ {\rm resultant} \ {\rm DTMF} \ {\rm signal}. \ f_{\rm a} \ {\rm belongs} \ {\rm to} \ {\rm low} \\ {\rm frequency} \ {\rm group} \ {\rm and} \ f_{\rm b} \ {\rm belongs} \ {\rm to} \ {\rm high} \\ {\rm frequency} \ {\rm group}. \end{array}$

Each of low- and high-frequency groups comprise four frequencies. From the various keys present on the telephone keypad, two different frequencies, one from the high-frequency group and another from the low-frequency group, are used to produce a DTMF signal to represent the pressed key. The amplitudes A and B of the two sine waves should be such that:

0.7<(A/B)<0.9.....(2)

The frequencies are chosen such that


when a DTMF signal is applied at the base of the transistor, the LED starts emitting IR rays due to varying collector current of transistor T1.

Dialler IC UM91215B (IC1) needs only 3 volts for its operation, but at least 4 volts should stay across the IR LED for effective transmission. Hence a supply of 4.5 volts is used. Three pencil cells in series can provide the required voltage. The supply for IC1 is regulated by zener diode ZD1.

Fig. 3 shows the DTMF signal receiver, chance counter and relay driver circuit.

When Darlington phototransistor T2 (L14F1) receives the modulated IR rays from IR LED, it converts the IR pulse train into equivalent electrical signal and couples the same to DTMF decoder IC

Decoded 4-	T bit Output of IC	TABLE II C2 Corresp	onding to	Keys Pressed	output of IC10 is displayed on 7-segment
Key pressed	Pin 14 (MSB)	Pin 13 C	Pin 12	Pin 11 (LSB)	display DIS2
	D	C	В	A	(LT543). Simi-
1	0	0	0	1	larly, data
2	0	0	1	0	from another
3	0	0	1	1	latch (IC7) is
4	0	1	0	0	decoded by
5	0	1	0	1	IC9 (CD4511)
6	0	1	1	0	and displayed
7	0	1	1	1	on 7-segment
8	1	0	0	0	display DIS1.
9	1	0	0	1	The two out-
0	1	0	1	0	puts together
*	1	0	1	1	represent the
#	1	1	0	0	2-digit number
А	1	1	0	1	entered from
В	1	1	1	0	the keypad.
С	1	1	1	1	The out-
D	0	0	0	0	puts of latches
					IC7 and IC8

DTMF signal generator and transmitter

layout for the PCB

CM8870 (IC2). If the signal is of sufficient amplitude and duration greater than the length of time predetermined by R8-C4 time constant, IC2 detects the signal and outputs a high-going pulse (StD) at its pin 15. The outputs at pins 11 through 14 of IC2 are the hexadecimal equivalent of the detected signal. Different decoded 4-bit numbers that would be generated due to pressing of different keys are shown in Table II.

The decoded number is latched in IC7 or IC8 depending upon the conditions governed by the latch-enable and relayselect signal generator logic circuit built around IC3, IC4, IC6 and transistor T3. The latched data from IC8 (74LS75) goes to BCD-to-7-segment decoder-cum-driver CD4511 (IC10). The decoded data at the are also connected to 4-bit magnitude comparators IC11 and IC12 (each CD4585), respectively. Here, the combined output of the two latches is used as one of the two 8-bit numbers required by the magnitude comparator. Thumbwheel switches TWS1 and TWS2 are connected to comparators IC11 and IC12, respectively, for setting the 8-bit code. If the latched data inputs A0 through A7 from keypad and B0 through B7 from the thumbwheel switches are equal, the composite comparator outputs logic 1 at pin 3 of IC12. Output pin 3 is designated as A=B. When A=B is high, either relay A or relay B can be energised depending upon the signal from the relay-enable signal generator built around IC5.

output of IC10

The circuit is powered by 230V AC mains using switch S1. The AC mains is stepped down by transformer X1 to deliver a secondary output of 12V-0-12V at 500 mA. The transformer output is rectified by diodes D2 and D3 and smoothed by capacitor C7. Regulator 7805 (IC14) provides regulated 5V supply, which is connected to the entire circuit via normally closed (N/C) contacts of limit microswitch LS2. Another limit microswitch LS1 is connected to the base of transistor T4.

The status of limit microswitches LS1 and LS2 depends upon the position of the door-locking plunger. In the unlocked condition, the plunger stays in its retarded state remote from limit microswitch LS2, and the N/C contact of LS2 allows current to the circuit. On the other hand, the N/C contacts of limit microswitch LS1 are cutoff by the plunger and hence relay RL1 cannot be energised. However, relay RL2 can be energised.

If the plunger is moved forward to lock the door (using relay RL2), the plunger pushes limit microswitch LS2. When the plunger is completely advanced, it breaks the N/C contacts of microswitch LS2 and hence the connection of the circuit with +12V power supply. Being disconnected with the power supply, relay RL2, and consequently the motor/solenoid driving the plunger, goes off.

To resume the supply for unlocking, one has to press push-to-on switch S3. Consequently, the relay RL3 gets supply and pulls its armature. Even if S3 is released now, relay RL3 would still be in the energised condition, getting supply through its N/O contacts and providing supply to the circuit.

When the plunger is moved forward from its retarded position, microswitch LS1 frees itself and reconnects to the base of transistor T4, allowing relay RL1 to be activated. If the plunger is moved back to open the door (using relay RL1), limit microswitch LS1 would again be pushed and disconnect from the base of transistor T4, stopping the supply to the motor/solenoid. Thus the two microswitches also act as the limit switches for the motor.

Working of the circuit

When the circuit is switched on, counters IC6 (CD4017) and IC13 (CD4033) are reset by the power-on-reset citcuits comprising R13 and C5, and R16 and C6, respectively. So pin 13 of IC13 and Q0 output of IC6 both go high.

Now, if any key is pressed, and the generated IR ray having sufficient amplitude falls on phototransistor T2, the decoded data would be available at the outputs of IC2. The StD pulse from pin 15 of IC2 goes to pin 9 of IC5. Since pin 10 of IC5 is already high due to pin 13 of IC13, the output of AND gate N11 would be a high-going pulse having duration equal to StD. This output pulse would make pin 1 of AND gate N5 high. AND gates N5 and N6 of IC4 together form a 3-input AND gate, which receives inputs at pins 4 and 5 from NAND gates N1 and N3 of IC3, respectively.

Normally, the outputs of NAND gates N1 and N3 are high if none of the keys '0', '*' and '#' is pressed (refer Table II), so pin 2 of AND gate N5 is also high. Pin 3 of AND gate N5 goes high whenever pin 8

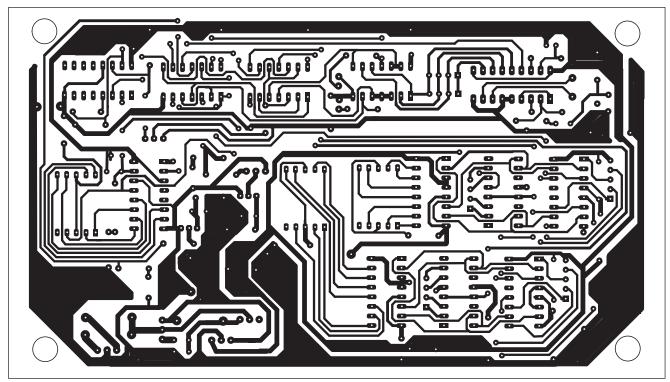


Fig. 8: Actual-size, single-side PCB layout of the receiver, chance counter and relay driver circuit

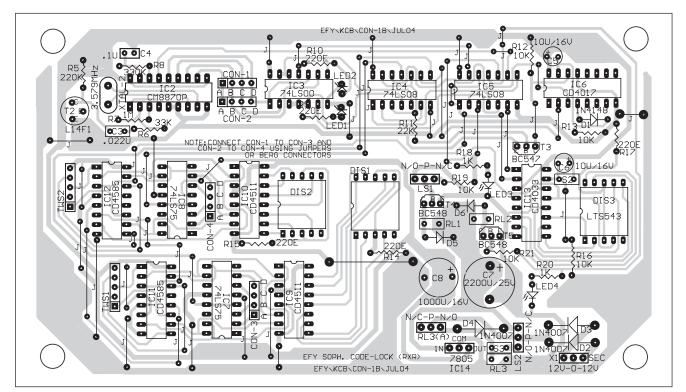


Fig. 9: Component layout for the PCB

of N11 goes high. Since pin 10 of N7 and pin 13 of N8 are tied to pin 3 of N5, these would also go high. Pin 12 of N8 is already high by the Q0 output of IC6 (CD4017). The output of N8 goes to latch-enable pins $4 \ {\rm and} \ 13 \ {\rm of} \ {\rm IC8}.$

The 4-bit data output of IC2 goes to latches IC7 and IC8. The StD pulse from IC2 forward biases transistor T3 to generate a clock pulse at its collector. This pulse being applied to the clock input of counter IC6 (CD4017), the counter advances by one and its Q1 output toggles from low to high state.

Now, if another key is pressed, the cor-

responding hexadecimal number is latched to IC7. At the end of this latching process, transistor T3 comes out of its saturated state and again applies a clock pulse to counter IC6. The counter advances by one to make its Q2 output high. Since Q2 output is tied to reset pin 15 of IC6, it immediately resets IC6 and its Q0 output goes high again. The process continues as long as one goes on pressing keys, except '0,' "" and "#.'

When '#' key is pressed, the output of NAND gate N1 goes low as both of its inputs get high pulse from IC2. The 3input AND gate formed by N5 and N6 is disabled, hence STD1 pulse is not allowed to change the counter CD4033 state or enable any latch to change its previously latched data.

The relay RL1 driving signal would be high if both the inputs of N11 are high. Pin 1 of N9 is fed by the composite comparator's output at pin 3 (A=B) of IC12. So pin 1 of N9 would be high if the numbers latched in IC7 and IC8 are equal to the number preset by thumbwheel switches TWS1 and TWS2. The input at pin 2 of gate N9 will be high when '#' key is pressed. Output at pin 3 of gate N9 is used to generate the relay RL1 select signal and clock for IC13.

So for driving relay RL1, one has to enter the correct code, then press '#' key on the keypad. On the other hand, for driving relay RL2, one needs to press '0' key after entering the correct code from the keypad. The magnitudes of the relay drive signals from gates N9 and N12 are boosted by transistors T4 and T5, respectively.

Since the lock-opening code comprises only two decimal digits, the number of chances to open the lock has been limited to two to ensure security. This is achieved with a chance counter built around decade counter-cum-7-segment decoder CD4033 (IC13).

The power-on reset signal to counter IC13 is provided by capacitor C6 and resistor R16. The counter remains reset until '#' key is pressed. When '#' key is pressed, pin 5 of gate N10 goes high by the relay RL1 select signal. Pin 4 of the same gate also goes high by STD1 pulse if output pin 13 of IC13 is high. So the counter would get a clock pulse only when '#' key is pressed and its output pin 13 is high. But the clock pulse would advance the counter by one only if the counter's chip-enable input (pin 2) is low.

Pin 2 of counter IC13 is connected to the output of the composite comparator

(at pin 3 (A=B) of IC12). So if the correct code is entered from the keypad, the high A=B output would inhibit the counter from advancing. But if the entered code is wrong, the low A=B output would allow the counter to advance by one.

In this way, the counter tracks the number of failed attempts and displays the same on 7-segment display DIS3. If display DIS3 shows '1,' it means that one of the allowed chances have been exhausted.

The segment-c output (pin 13) of IC13 goes low with the exhaustion of two chances, which disables gate N11 and no STD1 pulse is generated further. So the input system would have no control over relay RL1 or RL2.

However, you can retry opening the lock by either of the following two ways:

1. Switching off the power supply to the circuit and then switching it on again to apply a power-on-reset to the chance counter.

2. Pushing manual reset switch S2 of the chance counter.

Construction

The transmitter part (acting as the key) is powered by a battery, so one can carry the same along with him. The lock system, including the IR receiver and relay driver circuit, is fitted on the back side of the door to be locked. The mechanical arrangement for the same is shown in Fig. 4. The manual reset switch, which you can use in the case of emrgency, must be kept hidden. You can mount it on the back side of the door such that in the case of emergency, you can access it from the front of the door by drilling a hole on the door. Drill a hole in front of the IR sensor (phototransistor T2) so that when the IR LED of transmitter is brought in front of the door, the emitted IR ray falls on the sensor. Mount the 7-segment displays on the front side of the door, so you can view the entered data code.

Alternatively, you can mount the entire transmitter-receiver combination on the back of the door. But, in that case, the keypad must be kept exposed for code entry from the front side of the door. The output of the transmitter can be connected directly to the receiver input, eliminating the need for infrared radiator. For the purpose, connect resistor R1 of the transmitter section directly to capacitor C3 of the receiver section after removing IR diode, transistor T1 (transmitter section), phototransistor T2 and resistor R5 (receiver section).

Whatever be the mounting option, it must be borne in mind that although IC2 (CM8870) is capable of detecting/decoding all the DTMF codes shown in Table I, only digits 1 through 9 can be used for formation of a code. The numbers representing '0,' '#,' and '*' keys haven't been used to form the code. Hence, the thumbwheel switches must be set to form a code between numbers 1 to 9 only.

Fig. 5 shows the connections of relays RL1 and RL2 to drive a single reversible-type AC motor. Instead of the motor, a solenoid can also be used to drive the plunger for opening or closing the door. If you use the solenoid, limit switch LS1 can be dispensed with to directly drive the base of transistor T4.

Steps for locking the door

1. Switch on power to the circuit using toggle switch S1.

2. Set the two thumbwheel switches to the desired code.

3. Align the two shutters of the door such that the plunger can move freely from one shutter to the other through the holes of the supports.

4. Switch on the DTMF transmitter.

5. Hold the IR LED transmitter close to the door such that the emitted IR ray falls on the IR sensor (phototransistor T2).

6. Enter code digits from the keypad and then press '0' key.

7. The motor starts running to rotate the plunger. The plunger moves forward due to screwing action of the threads over the surface of the plunger and inside the surface of supports. At the end of its journey, the plunger pushes limit microswitch LS2, cutting its N/C contact and hence the power supply to the receiver. Relay B goes off to cut power supply to the motor and hence the motor stops. The door is now locked.

Steps for unlocking the door

1. Push S3 momentarily. Relay RL3 immediately energises to power the circuit.

2. Switch on the DTMF transmitter and hold it close to the door such that the emitted IR ray falls on the sensor (phototransistor T2).

3. Enter the code from the keypad.

4. Press '#' key.

5. If the entered code is correct, relay RL2 energises and the motor starts running to rotate the plunger in reverse direction to disengage it from the supports. As soon as the plunger pushes limit microswitch LS1, the motor stops. Now you can push the shutters to open the door.

6. Switch off power to the circuit using switch S1.

7. If the entered code is not correct, the circuit gives you one more chance to unlock the door. Enter the code and press

ʻ#' again.

Emergency blocking

If you fail to enter the correct code in the allowed two chances, the input system would not accept any more signal from the IR transmitter until and unless the receiver is reset. Resetting can be done by either momentarily cutting the power to the circuit by using power switch S1 or by pressing manual reset switch S2. These switches should be kept hidden and used only in the case of emergency.

For greater security, you can increase the number of digits forming the code with some changes in the circuit. For a 3-digit code, you need to add another CD4585.

Actual-size, single-side PCBs for the transmitter and the receiver, chance counter and relay driver circuit are given in Figs 6 and 8, respectively, and their component layouts in Figs 7 and 9, respectively. \Box

Readers' comments

I have the following queries:

1. The code lock is working well but its range is 12.7 cm to 15 cm (5 to 6 inches) only. Why?

2. Why is '0' not used for formation of code?

3. How can I increase the range of the circuit?

Vivek

Through e-mail

The author, Arup Kumar Sen, replies:

Although IC CM8870 is capable of detecting/decoding all the 16 DTMF codes shown in the table here, only digits '1' through '9' can be used for formation of a code. Digit '0,' #' and '*' are not used here to form the code. Since pressing '0' key produces the binary equivalent of decimal number '10' at the decoder output, formation of a code comprising decimal '0' is not possible, as it can't be compared by a standard thumbwheel switch that sets binary '000' for decimal '0'. Moreover, '0' key is used here for

Binary Output Across Pins 11 through 14 of IC CM8870

Key pressed (UM91215)	Pin 14 MSB D	Pin 13 C	Pin 12 B	Pin 11 LSB A
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	0
8	1	0	0	0
9	1	0	0	1
0	1	0	1	0
*	1	0	1	1
#	1	1	0	0
Α	1	1	0	1
В	1	1	1	0
С	1	1	1	1
D	0	0	0	0

sending control signals.

The low range could be due to im-

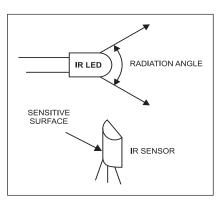


Fig. 1: Sensitive areas of the IR transmitter and receiver devices

proper orientation of the IR LED and the sensor (2N5777). Fig. 1 here shows the sensitive surface on the devices that transmits/receives the IR radiation.

IC 91215B can stand supply voltage of up to 5.5V, so supply voltage to the dialler may be increased slightly to extend the range. However, keep in mind that the gadget is not meant for use as a remotecontrolled device. So a range of 12.7 to 15 cm is sufficient for opening or closing the door.

TEMPERATURE INDICATOR USING AT89C52

ADITYA RANE

ere's a microcontroller-based temperature indicator that displays the temperature in the range of -55°C to 125°C. Besides AT89C52 microcontroller, it uses a temperature sensor chip and an LCD module. The indicator outputs the calibrated data in digital form. The program for the microcontroller is written in C and not in Assembly language. Since C program has well-defined syntax, it far outweighs the merits of the Assembly language program.

The circuit

Fig. 1 shows the block diagram of the temperature indicator using microcontroller AT89C52. The power supply for the circuit is regulated by IC 7805 and supplied to different parts of the unit. DS1621 is the temperature sensor chip. The microcontroller unit (MCU) reads the temperature from the sensor. The temperature data is compared with certain user-defined temperature values and processed inside the MCU as per the program and then sent to the LCD for display.

Fig. 2 shows the circuit of temperature indicator using microcontroller AT89C52. Working of each section of the circuit is covered in the following paragraphs.

Power supply. The power supply unit consists of a step-down transformer (230V AC primary to 0-9V, 250mA secondary), bridge rectifier and voltage regulator. The output of the transformer is fed to bridge rectifier diodes D1 through D4 (each 1N4007). The ripple from the output bridge rectifier is filtered by capacitor C1 and fed to regulator IC 7805. The regulated output is given to the temperature sensor, microcontroller unit and LCD module, respectively.

When switch S1 is closed, LED1 glows to indicate the presence of power in the system.

Temperature sensor. Temperature

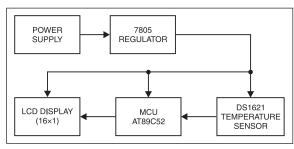


Fig. 1: Block diagram of temperature indicator using AT89C52

sensor chip DS1621 (IC3) is an 8-pin DIP IC. Its pin details are shown in Fig. 3 and the internal block diagram in Fig. 4. The chip can measure temperatures from -55° C to $+125^{\circ}$ C in 0.5°C increments, which are read as 9-bit values. It can operate off 2.7V to 5.5V. Data is read/written via a 2-wire serial interface. Pins 1 and 2 of the temperature IC are connected to pins 11 and 10 of the microcontroller, respectively.

The thermal alarm output (T_{out}) of IC DS1621 activates when the temperature exceeds user-defined high temperature TH. The output remains active until the temperature drops below user-defined low temperature TL. User-defined temperature settings are stored in the non-volatile memory. Temperature settings and temperature readings are all communicated to/from IC DS1621 over a 2-wire serial cable. The most significant bit (MSB) of the data is transmitted first and the last significant bit (LSB) is transmitted last.

Addressing. The chip address of DS1621 comprises internal preset code nibble '1001' (binary) followed by externally configurable address pins/bits A2, A1 and A0. The eighth bit of the address byte is determined by the type of operation (either read or write) that is to be performed. For writing to the device the eighth bit is '0' and for reading from the device the eighth bit is '1.' In our case, A2, A1 and A0 pins are grounded and hence

the device address for writing is '1001000b' or 90(hex) and for reading the device address is '10010001b' or 91(hex).

Configuration/status register. This register can be accessed for reading or writing by issuing command byte AC(hex) from the master (82C52). This register is particularly re-

quired if DS1621 is used for thermostat control, since it contains flag bits THF (high-temperature flag) and TLF (lowtemperature flag) which are set to '1' when temperature crosses the respective limits earlier written into TH and TL registers. It also contains the flag bit (Done), which is set to '1' when results of conversion are available after issuing of start conversion command EE(hex). The other bits of configuration register are defined below:

'NVB' is the non-volatile memory busy flag, '1' is write to an E² memory cell in progress, '0' indicates that non-volatile memory is not busy, 'POL' is non-volatile output polarity bit ('1'=active-high and '0'=active-low) and '1SHOT' is one-shot mode. A copy to E² may take up to 10 ms. If 1SHOT is '1,' DS1621 will perform one temperature conversion upon reception of the Start Convert T protocol. If 1SHOT is '0', DS1621 will continuously perform temperature conversions. This bit is nonvolatile.

Command Set. Complete command instruction set for accessing various internal registers as well as for starting and stopping of conversion process are given in Table I. For understanding the exact sequence in which Start bit, address byte, acknowledgement bit, command byte(s) and data byte(s) are to be sent along the I²C bus, please refer to the datasheet of DS1621, wherein these aspects have been explained in proper detail. This will help

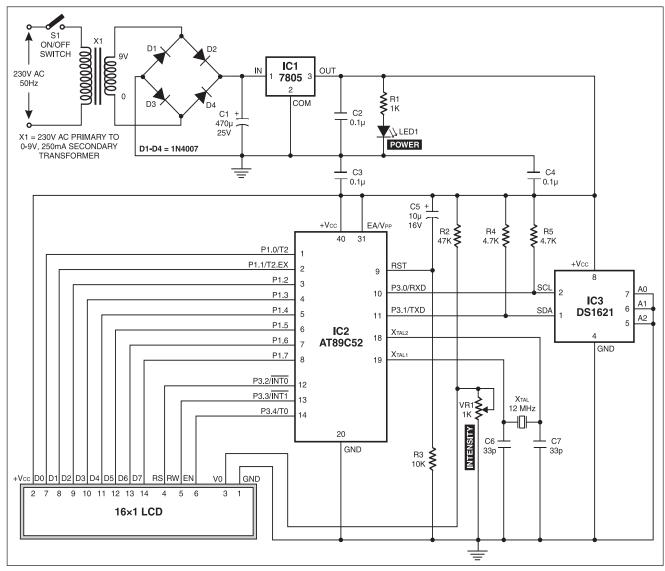


Fig. 2: Circuit diagram of temperature indicator using AT89C52

in understanding the contents of the main program.

Microcontroller unit. Microcontroller AT89C52 (IC2) is a 40-pin IC from Atmel. Its pin details are shown in Fig. 5. Like AT89C51, it also belongs to the 8031/8051 family. Microcontroller AT89C52 has a 256×8-bit internal random-access memory (RAM), eight interrupt sources and 8 kB of flash memory compared to 128x8-bit internal RAM, six interrupt sources and 4 kB of flash memory in AT89C51. By combining a versatile 8-bit CPU with flash memory on a monolithic chip, Atmel AT89C52 is a powerful, highly flexible and cost-effective solution to many embedded control applications.

Ports 0 and 2 are 8-bit bidirectional input/output (I/O) ports. These ports haven't been used in this temperature indicator. Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Ports 1.0 through 1.7 are connected to pins 7 through 14 of the LCD. Port-1 output buffers can sink/ source four TTL inputs.

Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Ports 3.0 and 3.1 of IC2 are connected to serial clock line (SCL) and serial data line (SDA) of IC3, respectively. Ports 3.2 through 3.4 are connected to pins 4 through 6 of the LCD, respectively. Port-3 output buffers can sink/source four TTL inputs.

A 12MHz crystal oscillator is connected to X_{TAL1} and X_{TAL2} pins for operation of the microcontroller. A high pulse on RST pin (pin 9) while the oscillator is running resets the microcontroller. In this circuit, this pin is connected to

+Vcc through capacitor C5 (10 μ F, 16V). The external-access enable pin (EA) is connected to +Vcc for internal program executions. This pin also receives the 12V programming-enable voltage (V_{pp}) during flash programming when 12V programming is selected.

The program

The C-language program for microcontroller AT89C52 is compiled using cross-compiler C51 Version 7.10 from Keil Software. The demo version of this compiler is available for free on the Website 'www.keil.com.' It can compile programs up to 2 kB only, which is sufficient for writing most programs.

For testing the display, the program Hello.c is given here. This program,

	PARTS LIST
Semiconduct	ors:
IC1	- 7805 regulator IC
IC2	- AT89C52 microcontroller
IC3	- DS1621 temperature sensor
D1-D4	- 1N4007 rectifier diodes
LED1	- Red LED
Resistors (all	¼-watt, ±5% carbon,
unless stated	otherwise):
R1	- 1-kilo-ohm
R2	- 47-kilo-ohm
R3	- 10-kilo-ohm
R4, R5	- 4.7-kilo-ohm
VR1	- 1-kilo-ohm preset
Capacitors:	
C1	- 470µF, 25V electrolytic
a. a. a.	capacitor
C2, C3, C4	- 0.1µF ceramic disk
C5	- 10µF, 16V electrolytic
~ ~ ~ ~	capacitor
C6,C7	- 33pF ceramic capacitor
Miscellaneou	<i>s</i> :
Transformer	- 230V AC primary to 0-9V
	250mA secondary
Crystal	- 12 MHz
LCD	- 16×1 LCD module
S1	- On/Off SPST switch

when loaded to AT89C52, displays "Hello! How R U?" on the LCD. The Hello.c program has nothing to do with temperature. It just guarantees a perfect communication between the LCD and the microcontroller. For temperature indication, the program Temp52.c is used. The programs Hello.c and Temp52. c, along with the hex files, are given at the end of this article.

The communication interface between the temperature sensor and the microcontroller chip follows the I²C (Inter Integrated Circuit) standard, which is implemented in 'C' here. I²C is a simple master/slave type interface. Simplicity of the I²C system is primarily due to the bidirectional 2-wire (SDA and SCL) design and the protocol format. Bidirectional communication is through 2-wire lines (which are either active-low or passive-high). In the program, the i2c_stop, i2c_start, i2c_write and i2c_read functions are used for communicating Clock and Data from DS1621 to P3.0 and P3.1 of AT89C52, respectively. Such functions as command, ready and display in the program are used for driving the LCD.

Program compilation for 8051 family controller. Keil C51 can compile C programs for most of the Atmel family microcontrollers. It also supports other devices. Unlike other cross-compilers (Hi-Tech, IAR, SDCC, etc), Keil C51 offers such features as fast code generation,

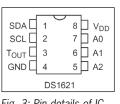
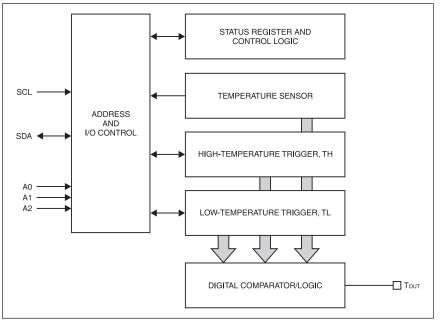



Fig. 3: Pin details of IC DS1621

other assembler. As far as code generation is concerned, it uses minimum RAM and on-chip flash, allowing faster and optimised program in Intel-Hex format, which can be loaded to the microcontroller using any programmer. Conversion of C program into Intel-Hex format takes only a few seconds. In fact, you don't require

strong multit-

asking environ-

ment, real-time

operating system

and inbuilt code

optim-isation. To enjoy these fea-

tures, you'll need

Fig. 4: Internal block diagram of IC DS1621

Fig. 5: Pin details of IC AT89C52

full version of the compiler.

Keil C51 has options to generate Assembly code and all the code listing supported by 8051 family, but Assembly language generated cannot be recompiled on any MSB all that long Assembly program in order to generate the output hex file.

LCD

For display, a Lampex make 16x1 LCD (model GDM1601A) was used. Pin connections of this LCD are given in Table II. Pins 15 and 16 haven't been used. Pin 3 is connected to the circuit ground through a 1-kilo-ohm preset that is used to control the light intensity of the LCD. Note that the Hitachi make 16×1 LCD (HD44780A00) will not work in this project.

Construction

The circuit of this temperature indicator using microcontroller AT89C52 can be assembled on any general-purpose, singleside PCB. The microcontroller chip and the temperature sensor chip are mounted on the respective IC bases. Ensure a proper contact between pins of the IC bases and

DONE	THF	TLF	NVB	1	0	POL	1SHOT
MSB							LSB

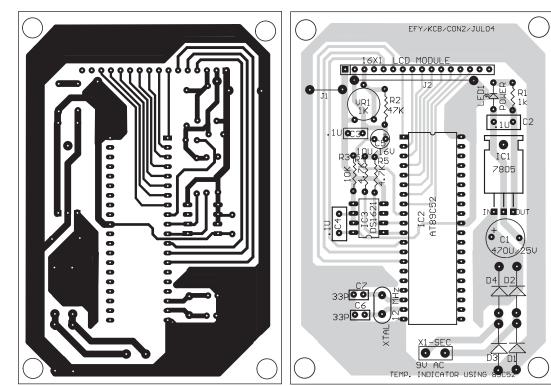


Fig. 6: Solder-side PCB layout for temperature indicator using AT8952

the solder points on the PCB. Capacitors C3 and C4 must be connected near IC2 and IC3, respectively. The actual-size, single-side PCB layout for the circuit and its component layout are shown in Figs 6 and 7, respectively.

Program compilation

After you've installed Keil C51 in your PC, you can compile C program and generate hex file in either DOS or Windows mode. Here, program compilation for the program Hello.c has been explained. The same procedure is to be followed for the

Fig. 7: Component layout for the PCB

temperature indication program Temp52. c. For more example programs, refer to the directory in your hard drive where Keil is installed in the example folder.

DOS mode. 1. Installation of Keil C51 automatically generates 'Keil' folder in your computer's C drive.

2. Go to 'C:\Keil\C51\Bin' folder

inside 'Keil' folder.

3. Copy 'Hello.c' into 'Bin' folder.

4. Copy 'Regx52.h' from 'C:\Keil\ C51\Inc\Atmel' folder into 'C:\Keil\ C51\Bin' folder.

5. Type 'c51 Hello.c' against the prompt and press Enter key.

TABLE I	
DS1621 Command Set	

Instruction	Description	Protocol
Read Temperature	Reads last converted temperature value from temperature register.	Aah
Read Counter	Reads value of count remaining from counter.	A8h
Read Slope	Reads value of the slope accumulator.	A9h
Start Convert T	Initiates temperature conversion.	EEh
Stop Convert T	Halts temperature conversion.	22h
Access TH	Reads or writes high temperature limit value into TH register.	A1h
Access TL	Reads or writes low temperature limit value into TL register.	A2h
Access Configuration	Reads or writes configuration data to configuration register.	ACh

6. Type bl51 Hello. obj.' This command is used for linking the Hello.obj file created by Keil C51.

7. Type 'oh51 Hello.' This command is used for creating the hex file.

Windows mode. 1. Installation of Keil C51 software automatically creates the icon 'Keil uVision2' on the desktop.

2. Double-click 'Keil uVision2.'

3. Suppose you have kept 'Hello.c' under 'C:\Windows \ Desktop\Hello' folder. Open 'Hello.c' from the 'File' menu.

4. From the menu bar, select 'Project/ New Project.' Name the new project and save it with extension

'.uv2.'

5. Select CPU as Atmel/AT89C52.

6. Choose 'Yes' in the option "Copy standard 8051 code to current project folder."

7. Choose 'View/Project Window.' A 'Project Workspace' window appears.

8. Double-click 'Target 1.'

9. Right-click 'Source Group1' and select "Add files to Group 'Source Group1." A window appears.

10. Add 'Hello.c' and close this window.

TABLE II Pin Connections of the LCD

Pin No. Functions

52) C52) C52)
C52)
C52)
C52)
/
(52)
/01)
52)
52)
52)
52)
52)
52)
52)
52)

11. Double-click 'Source Group1' on the 'Project Workspace' window. Now the file name 'Hello.c' appears.

12. From 'Project' menu, select 'Options for File 'Hello.c.' In 'Properties,' choose file type as 'C source file.'

13. Again from 'Project' menu, select 'Options for Target 'Target1.'" A screen appears.

14. Choose 'Output' and tick on 'Hex File' for generating the hex file. Again choose 'Listing' option and tick on 'Conditional and Assembly Code'.

15. Open the Project menu and select 'Build Target' or press F7. The compiler shows ""Hello" 0 Error(s), 0 Warning(s)" in the output window just below the project window.

16. Close the screen and go to the 'Hello' folder to see the generated hex file and listing file.

Load the hex file into the microcontroller chip using a programmer. (Here' we've used Atmel Flash Programmer from Frontline Electronics.) Now integrate the microcontroller chip into the populated PCB comprising the temperature sensor and the LCD module.

Troubleshooting

1. Check the COM port on your PC | i

before programming.

2. In case there is no message even if all the connections are correct, adjust the intensity control potentiometer (VR1) for display.

3. Check whether your hex file matches with the hex file given below in the article.

4. If the LCD shows wrong characters, replace it with another make LCD.

5. If DS1621 is not connected properly to AT89C52, the display will be completely blank.

Note: All the source codes and relevant files of this article have been included in CD.

	TEMP52.C	
/* Written By: Aditya Rane T.E Computer Engg, Lokmanya Tilak College of Engi- neering, New Bombay, Vashi E-mail: aditya@orionengg.com Program for temperature indicator compiled under keil 'C' */ #include <stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h> #include<stdio.h< td=""></stdio.h<></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h>	<pre>temperature = 0; convert(ch); if(flag == FALSE) { flag = TRUE; tmp = temperature; } else { if(tmp != temperature) { tmp = temperature; sprintf(str,"%d% s",temperature," Centigrade"); command(0x01); command(0x80); display(str); } }</pre>	<pre>} i = DATA; CLOCK = HIGH; delay_time(); CLOCK = LOW; } //I2C Data Read Function unsigned char i2c_read (void) { unsigned char i,j; j = 0; i = DATA; for(i=0;i<8;i++) {</pre>
//	}	j = DATA; $delay_time();$ CLOCK = LOW;
void ready (void); void command (int); void display (char*); void i2c_stop (void); void i2c_start (void); void i2c_write (unsigned char); unsigned char i2c_read (void); void convert (unsigned char);	<pre>//Delay Servive Routine void delay_time (void) { unsigned int i; for(i=0;i<100;i++); } //I2C Start Function void i2c start (void)</pre>	<pre>} return j; } //Binary to Decimal Conversion Function void convert (unsigned char ch) { char x; unsigned char arr[8]={128,64,32,16,8,4,2,1};</pre>
// // Port Defination // #define DATA P3_1 // Serial data #define CLOCK P3_0 // Serial clock //Begining of Main Program yoid main (void)	{ DATA = HIGH; delay_time(); CLOCK = HIGH; delay_time(); DATA = LOW; CLOCK = LOW; }	<pre>unsigned char arr[0]=(126,04,02,16,0,4,2,1); if(((ch & 0x80) ? 1 : 0)==0) {</pre>
<pre>int tmp; int tmp; char str[16]; bit flag = FALSE; unsigned char ch; void command (int); void display (char *); command(0x3c); command(0x3c); command(0x0c); command(0x0c); while(1)</pre>	//I2C Stop Function void i2c_stop (void) { unsigned char i; CLOCK = LOW; DATA = LOW; CLOCK = HIGH; delay_time(); DATA = HIGH; i = DATA;	<pre>} } else { ch=~ch; ch=ch+1; for(x=0;x<8;++x) { if(((ch & 0x80) ? 1:0)) temperature = temperature arr[x] * ((ch & 0x80) ? 1:0);</pre>
<pre>{ i2c_start(); i2c_write(0x90); i2c_write(0xEE); i2c_start(); i2c_start(); i2c_write(0x90); i2c_write(0xAA); i2c_start(); i2c_write(0x91); ch = i2c_read(); i2c_stop(); i</pre>	<pre> } //I2C Data Write Function void i2c_write (unsigned char j) { unsigned char i; for(i=0;i<8;i++) { DATA = ((j & 0x80) ? 1:0); j <<= 1; CLOCK = HIGH; delay_time(); CLOCK = LOW; CLOCK = LOW; } }</pre>	ch <<= 1; } temperature=-temperature; } //Display Ready Check Function void ready (void) { P3_4 = 0x00; P1 = 0xff; P3_2 = 0x00; P3 3 = 0x01;

while(P1 7)

 $P3_4 = 0x00;$ P3 4 = 0x01;

 $P3_4 = 0x00;$

//Display Command Function void command (int a)

ready(); P1 = a;

 $P3_2 = 0x00;$ $P3_3 = 0x00;$ $P3_4 = 0x01;$ P3 4 = 0x00;

//Display Write Function void display (char *str)

unsigned int i; for(i=0;i<=strlen(str)-1;++i)

if(i == 8)command(0xc0); if(i == 16) command(0x80); ready(); P1 = str[i]; $P3_2 = 0x01;$ $P3_3 = 0x00;$ P3 4 = 0x01P3 4 = 0x00;

TEMP52.HEX

: 100 F270025642573002043656 E7469677261646583:090F3700008040201008040201B2

:100DA800C2007F3C7E00120F9A7F0C7E00120F9

AC1 :100DB8007F067E00120F9A120F8B7F90120EB87F5B :100DC800EE120EB8120F6A120F8B7F90120EB87 FB8

:100DD800AA120EB8120F8B7F91120EB8120F098 F3C

:100DE80034120F6AE4F508F509AF34120CF220004A $:100 DF8000 A D20085082285092380 B CE5236509708 D\\:100 E080004 E522650860 B 08508228509237538 FF46$

:100E180075390F753A2785083B85093C753DFF757F :100E28003E0F753F2C7B007A00792412085C7F0105

:100E38007E00120F9A7F807E00120F9A7B007A0044 :080E48007924120E50020DBFC7

:0E0F7C00E4FFFE0FBF00010EEF64644E70F53F :010F8A002244

:0F0F8B00D2B1120F7CD2B0120F7CC2B1C2B02211 :100F6A00C2B0C2B1D2B0120F7CD2B1A2B1E433 F591

:010F7A003541 ·010F7B002253

:020EB800AD0784

:100EBA00E4FCED30E703D38001C392B1ED25E0FDF8 $: 100 ECA00 D2B0120 F7CC2B00 CBC08 E7A2 B1 E433 FC6A \\: 070 EDA00 D2B0120 F7CC2B080$

:010EE10022EE

:100F0900E4FDA2B1E4FCED25E0FDD2B0A2B1E433E9 :0D0F19004205120F7CC2B00CBC08EBAF0506 :010F260022A8

:020CF2008F353C

: 100 CF 40078377 C007 D007 BFF7 A0 F79387 E007 F088 F:100D0400120C2CE53530E7047F0180027F00EF7080 :100D140041F536E53530E7047F0180027F00EF605E :100D24002374372536F8E6FD7C00E5357E0030E790 :100D3400047F0180027F00120C7FEF2509F509EE84 :100D44003508F508E53525E0F5350536E536B4080A :100D5400C2226335FF0535E4F536E53530E7047F17 :100D64000180027F00EF602374372536F8E6FD7CAE :100D740000E5357E0030E7047F0180027F00120C1D :100D84007FEF2509F509EE3508F508E53525E0F589 :100D9400350536E536B408C2C3E49509F509E4958A :030DA40008F50847

·010DA7002229

:100F4000C2B47590FFC2B2D2B3309706C2B4D2B465 :050F500080F7C2B4228D

:0E0F9A00120F408F90C2B2C2B3D2B4C2B422C2 :060E50008B358A3689375C

:100E5600E4F538F539AB35AA36A937120F55EF2424

:100E6600FFFFEE34FFFED3E5399FE5389E5042E59D :100E7600396408453870067FC0FE120F9AE539645A :100E860010453870067F80FE120F9A120F40AB3560 : 100 E9600 AA36 A937853982853883120 C52 F590 D245:100EA600B2C2B3D2B4C2B40539E53970A8053880E8

:0C0FA800787FE4F6D8FD758148020DA8A2 :100B5C00E709F608DFFA8046E709F208DFFA803 E7B

:100B6C0088828C83E709F0A3DFFA8032E309F60868 :100B7C00DFFA8078E309F208DFFA807088828C83D0 :100B8C00E309F0A3DFFA806489828A83E0A3F60884 :100B9C00DFFA805889828A83E0A3F208DFFA804C5E :100BAC0080D280FA80C680D4806980F28033801035 :100BBC0080A680EA809A80A880DA80E280CA80339E :100BCC0089828A83ECFAE493A3C8C582C8CCC58316 $: 100 BDC00 CCF0 A3 C8 C5 82 C8 CC C5 83 CCD F E9 DE E7 80 E6 \\: 100 BE C000 D8 98 28 A8 3 E4 93 A3 F 60 8 DF F 9 E CFA A9 F 065 \\$:100BFC00EDFB2289828A83ECFAE0A3C8C582C8CCBB :100C0C00C583CCF0A3C8C582C8CCC583CCDFEADED3 :100C1C00E880DB89828A83E493A3F208DFF980CC35 :100C2C0088F0EF60010E4E60C388F0ED2402B4042E :100C3C000050B9F582EB2402B4040050AF232345D5 :060C4C008223900BAC7343

:100C5200BB010CE58229F582E5833AF583E0225057 :100C620006E92582F8E622BBFE06E92582F8E222A1 :0D0C7200E58229F582E5833AF583E49322BB :100C7F00EF8DF0A4A8F0CF8CF0A428CE8DF0A42E89

:020C8F00FE2243 :10080000E5442438F8E60544227835300802783883 :10081000E475F001120CBC020C912001EB7F2ED28A :10082000018018EF540F2490D43440D4FF30050BCE :10083000EF24BFB41A0050032461FFE545600215A0 $: 10084000450548 {\tt E}5487002054730080 {\tt D}7835 {\tt E}475 {\tt E}0$:10085000F001120CBCEF020CAA020EE27403D208E3 100860008003E4C208E5448B358A368937E4E545C0 :10087000F547F548E54560077F2012083B80F57590 :1008800046FFC202C201C203C204C206C207C209B5 :10089000120809FF700D3008057F0012084CAF48A0 :1008A000AE4722B4255FC2D5C205120809FF24D085 :1008B000B40A00501A75F00A784530D50508B6FF1D : 1008C0000106C6A426F620D5047002D20480D924DD:1008D000CFB41A00EF5004C2E5D205020A4CD2028E :1008E00080C6D20180C0D20380BCD2D580BAD206E5 :1008F00080B47F2012083B2003077401B5450040F7 $: 10090000F1120800FF12083B020874D209D20780D6 \\: 1009100095120800FB120800FA120800F94A4B7001 \\$

:100930008E82758300120C5260060EEE654670F0D2 :10094000C2D5EBC0E0EAC0E0E9C0E0EE120A93D005 :10095000E0F9D0E0FAD0E0FB120C91FF60AAEBC006 :10096000E0EAC0E0E9C0E012083BD0E02401F9D0A1 :10097000E03400FAD0E0FBE5460460DCD546D980DF :10098000877BFF7A0A798FD203809C791080027965 : 1009900008C207C2098008D2D5790A8004790AC240 $: 1009A000D5E546047002F546E4FAFDFEFF120800A4 \\: 1009B000FC7B08200213120800FD7B1030010A1294 \\$:1009C0000800FE120800FF7B20EC3382D592D55040 : 1009 D00013 C3 E43001069 FFF E49 EFE E42002039 D62:1009E000FDE49CFCE4CBF8C202EC700CCFCECDCC85 :1009F000E824F8F870F38017C3EF33FFEE33FEED11 :100A000033FDEC33FCEB33FB994002FB0FD8E9EBF1 $: 100A1000300205F8D0E0C448B202C0E00AEC4D4E06 \\: 100A20004F78207B0070C2EAB5460040BCC0E0129F$:100A30000A95D0F0D0E0200204C4C0E0C4B202C0E5 :100A4000F0120824D0F0D5F0EB020874120CCC0997 :100A50001153098B5808E24C08DE42098F4F099761 :0F0A60004409974908F743099D550981460981C3 :100A6F00450981470B3D5008E62D08EA2E090D2B4D :100A7F0008EE23090B200B262A08A64800000905BB :100A8F003F3F3F00790AA2D5200414300609B91060 :100A9F00020404B9080104A2D52007025001042062 :100AAF0003689203B545005034C0E07F203004192D $: 100 ABF007F30A20372077206500F120AECC203C2F4 \\: 100 ACF0007C206C2097F30800F300603E9C0E0126B \\$:100ADF00083B300603D0E0F9D0E0B545CC3006171F : 100 A E F 007 F 30 B 9100 C 1208 3 B 7 F 5 8 300 5077 F 7 8 8094:100AFF0003B9080312083B3003057F2D02083B7F23 :100B0F00202009F87F2B2007F322920380CF286E35 :100B1F00756C6C2900D2021208003002F8C20278FC : 100B2F004530D50108F60208A62D50434958120842:100B3F00002403B405004001E4900B389312082CF5 :0D0B4F00743A12082CD20475450402098B7B :100F5500E4FFFE120C91600C0FEF70010E09E970B1 :050F6500F20A80EF22FA

:100C9100BB010689828A83E0225002E722BBFE0261 :090CA100E32289828A83E4932294

:100CAA00BB010689828A83F0225002F722BBFE0129 :020CBA00F32223

:100CBC00FAE6FB0808E6F925F0F618E6CA3AF62239 :100CCC00D083D082F8E4937012740193700DA3A3B7 :100CDC0093F8740193F5828883E4737402936860CB :060CEC00EFA3A3A380DFCB

:100EE200EFB40A07740D120EED740A309811A89926 :100EF200B8130CC2983098FDA899C298B811F63070 : 070F020099FDC299F5992247:0000001FF

#include<stdio.h> #include<string.h> #include<Regx52.h>

void ready(void); void command(int); void display(char *); void main (void)

command(0x3c). command(0x0c); command(0x06); command(0x01); command(0x80); display("Hello! How R U ?"); while(1);

void command(int a)

HELLO.C

:1009200006791D7A0B7BFF20032EE545602A7E00A9

void ready(void); ready(); P1=a: P3_2=0x00; P3_3=0x00; P3 4=0x01: P3 4=0x00;

void display(char *str)

unsigned int i; for(i=0;i <= strlen(str)-1;++i)

> if(i == 8) command(0xc0); if(i == 16)command(0x80); ready(); P1 = str[i];

P3 2 = 0x01; P3 3 = 0x00: P3 4 = 0x01: $P3_4 = 0x00;$

void ready(void)

P3 4=0x00P1=0xff; P3_2=0x00; P3 3=0x01 while(P1 7)

> P3_4=0x00; P3 4=0x01:

P3 4=0x00;

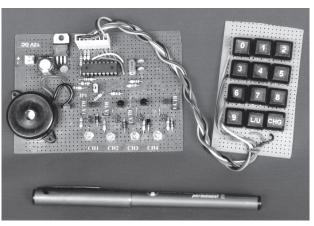
:010EB600A497 :010EB7002218 :03000000020FA844

HELLO.HEX

:06080008B088A09890A39 :0508EC0080F7C2B422F8
--

Readers' comments

I have purchased the complete kit, While assembling it, I found that the J2 label shown on the PCB is missing in the kit. As such, the LCD module could not be attached to the PCB. Also, J1 label shown on the PCB having two holes has neither been shown in the circuit diagram nor it was found in the kit. Please clarify.


Arun Rana Meerut *EFY:* J1 and J2 are nothing but jumper connectors. You can use any conductor wire to connect them. The respective holes for connecting these jumpers are provided in the PCB.

PIC16F84-BASED CODED DEVICE SWITCHING SYSTEM

VIJAYA KUMAR P.

ere's a microcontroller-based code lock that can be used for pre venting unauthorised access to devices or solenoid-operated locks/electrical devices. This code lock is built around Microchip's PIC16F84 microcontroller. Different passwords are used to access/ operate different devices. So the code lock can be used as a multiuser code lock, where the users can access respective devices by entering the device number followed by the password. The password can be changed by the user and no external back-up supply is needed to retain the password. The password length for each device can be between 4 and 15 digits, as desired by the user.

A buzzer has been added to provide suitable feedback with respect to the data entered via the keypad. The number of beeps indicates whether the data has been entered correctly or not. When anyone trying to access the device enters the

Working model of PIC16F84-based coded device switching system

incorrect password three times, the circuit sounds an alarm.

The alarm can be configured to work in two modes: auto-reset and latch-up. In the auto-reset alarm mode, all the keys pressed are ignored and the buzzer keeps beeping

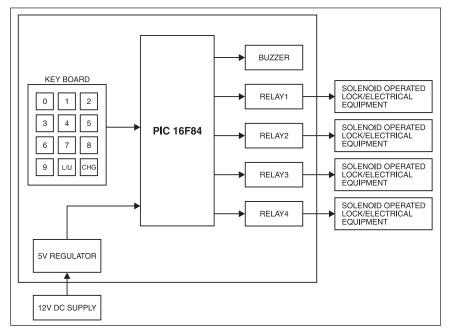


Fig. 1: Block diagram of PIC16F84-based coded device switching system

continuously for one minute, and thereafter the code lock resets automatically.

However, if you want additional security, you can enable the latch-up mode. In this mode the code lock never switches to the normal mode from the alarm mode and the only way to reset the code lock is to interrupt the power. When not in use, the code lock goes into sleep mode, and

it wakes up if any key is pressed. This feature reduces the power consumption by the microcontroller.

The main features of PIC16F84 microcontroller are:

1. Program and data memory are in separate blocks, with each having its own bus connecting to the CPU

2. Reduced instruction set controller (RISC) with only 35 instructions to learn

3. 1024 words (14-bit wide) of program memory

4.68 bytes of data RAM

5. 64 bytes of data EEPROM

6. 8-bit wide data bus

7. 15 special-function registers (SFRs)

8. 13 input/output (I/O) pins with individual direction control

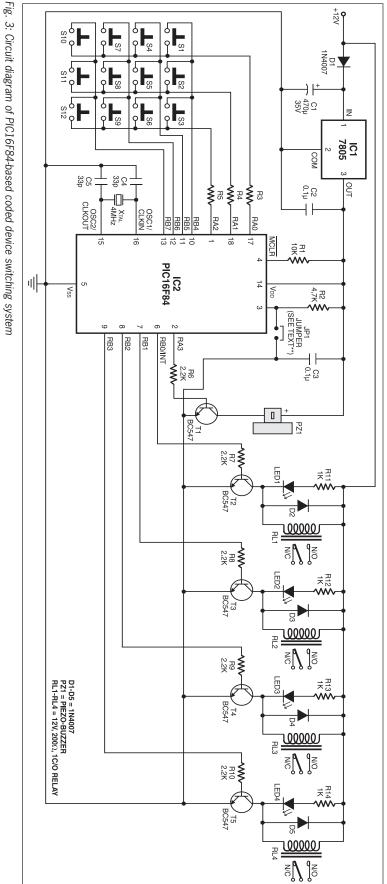
9. Code protection

10. Built-in power-on-reset, power-up timer, oscillator start-up timer

11. Power-saving sleep mode

Circuit description

Fig. 1 shows the block diagram of the microcontroller-based code lock. Pin diagram of PIC16F84 microcontroller is shown in Fig. 2. Basically, the circuit


Fig. 2: Pin details of PIC18F84 microcontroller

	PARTS LIST
Semiconductor	rs:
IC1	- 7805 +5V regulator
IC2 T1-T5	 PIC16F84 microcontroller BC547 npn transistor
D1-D5	- 1N4007 rectifier diode
LED1-LED4	- Red LED
$Resistors \ (all$	¼-watt, ±5% carbon, unless stated otherwise):
R1	- 10-kilo-ohm
R2	- 4.7-kilo-ohm
R3-R5	- 220-ohm
R6-R10	- 2.2-kilo-ohm
R11-R14	- 1-kilo-ohm
Capacitors:	
C1	- 470µF, 35V electrolytic
C2, C3	 0.1µF ceramic disk
C4, C5	- 33pF ceramic disk
Miscellaneous:	:
RL1- RL4	- 12V, 285-ohm, 1C/O relay (OEN58 type 1C)
X	- 4MHz crystal
PZ1	- Piezobuzzer
S1-S12	- Push-to-on tactile switch

(shown in Fig. 3) comprises PIC16F84 microcontroller (IC2), 4x3 matrix keyboard, relays and buzzer.

The microcontroller. PIC16F84 is an 8-bit CMOS microcontoller. Its internal circuitry reduces the need for external components, thus reducing the cost and power consumption and enhancing the system reliability. The microcontroller has two ports, namely, Port A and Port B. Out of the available 13 bidirectional I/O pins of Ports A and B, seven pins are used for keyboard interfacing, four pins are used to drive the relays corresponding to the four devices and one pin is used to read the jumper status for selecting the alarm mode. One can reset the microcontroller only by interrupting the power.

The password is stored in the internal 64-byte EEPROM memory of the microcontroller at addresses 0x00 through 0x3F. The memory can be programmed and read by both the device programmer and the CPU when the device is not code

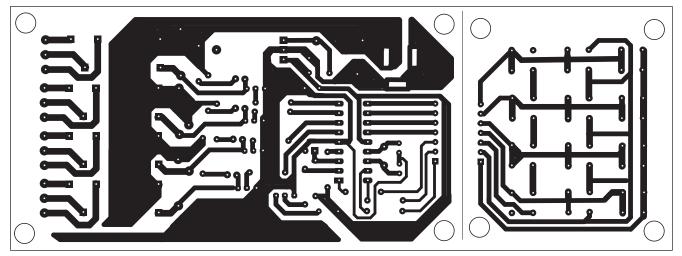


Fig. 4: Actual-size, single-side PCB layout for PIC16F84-based coded device switching system

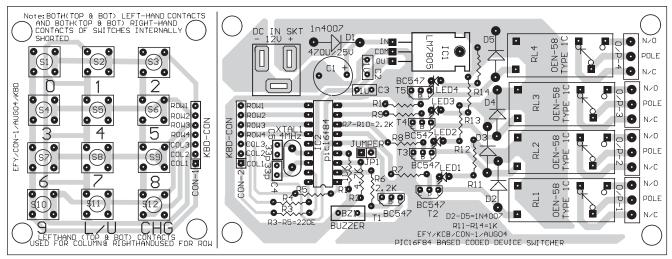


Fig. 5: Component layout for the PCB

protected. It is non-volatile and can retain data for more than 40 years.

Four special-function registers are used to read and write the EEPROM. These registers are named as EECON1, EECON2, EEDATA and EEADR, respectively. Register EEDATA holds 8-bit data for read/write and register EEADR holds the address of the EEPROM location being accessed. Register EECON1 contains the control bits, while register EECON2 is used to initiate the read/write operation.

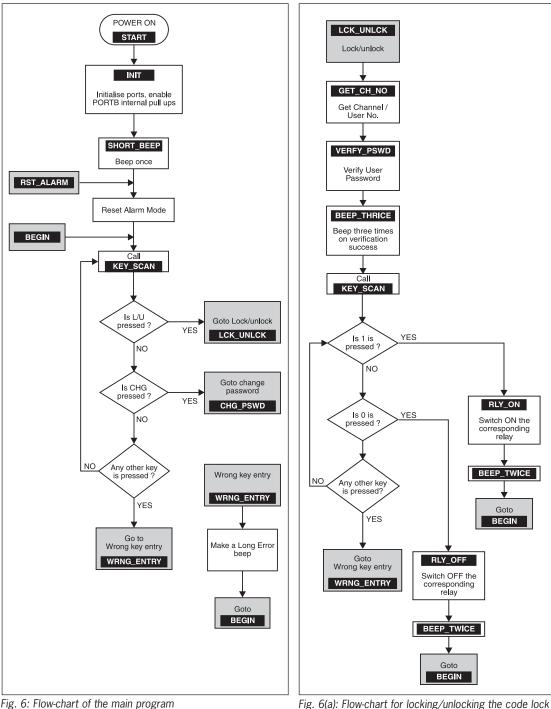
Oscillator. The internal oscillator circuitry of the microcontroller generates the device clock. The microcontroller can be configured to work in one of the four oscillator modes:

1. External resistor-capacitor

2. Low-power crystal (oscillation frequency up to 200 kHz)

3. Crystal/resonator (oscillation frequency up to 4 MHz) $\label{eq:4.4} \begin{array}{l} \mbox{High-speed crystal/resonator (oscillation frequency up to 10 MHz)} \end{array}$

In this circuit, the oscillator is configured to operate in crystal mode with a 4MHz crystal along with two 33pF capacitors.


Reset circuit. The built-in power-on reset circuitry of the microcontroller eliminates the need for the external power-on reset circuit. In the circuit, MCLR pin is tied to $V_{\rm DD}$ through resistor R1 (10 kiloohms) to enable power-on reset. The internal power-up timer (PWRT) provides a nominal 72ms delay from power-on reset. This delay allows $V_{\rm DD}$ to rise to an acceptable level when the microcontroller is powered on. The oscillator start-up timer (OST) provides 1024-oscillator cycle delay after the power-up timer delay is over. This ensures that the crystal oscillator has started and is stable.

Power supply. The 12V DC supply for

the circuit is obtained from a 12V adaptor with 500mA rating. Any other source such as a 12V lead-acid battery can also be used. This 12V DC is used for operation of the relays used in the circuit. The regulated +5V supply for the microcontroller is derived using regulator IC 7805 (IC1). Diode D1 protects the circuit from reverse supply connections. Capacitor C1 filters out the ripples present in the incoming DC voltage.

Keyboard. The 12-key matrix keyboard comprises 12 tactile pushbutton switches arranged in four rows and three columns as shown in Fig. 3. Data is entered via this keyboard.

Ports A and B of the microcontroller are bidirectional I/O ports. Three lines of Port A (RA0 through RA2) are used as the output-scan lines and four lines of Port B (RB4 through RB7) are used as the input-sense lines. Port B of IC2 has weak

If any of the sense lines is found low, it means that a key at the intersection of the current scan line and the low sense line has been pressed. If no key is found to be pressed, the next scan line is made low and again scan lines are checked for low state. This way all the twelve keys are checked for any pressed key by the microcontroller.

Since mechanical tactile switch keys are used, pressing of a single key may be considered by the microcontroller as pressing of many keys due to the bouncing of the keys. To avoid this, the processor is made to wait up to a debounce delay of 20 ms during the pressing or releasing of a key. Within this debounce delay, all the bounces get settled out, thus debouncing the key.

In sleep (powerdown) mode, the device oscillator is turned off and the microcontroller is placed in its lowest-current consumption state. Also note that the microcontroller's

Fig. 6: Flow-chart of the main program

internal pull-ups, which can be enabled through the software. This eliminates the need for connecting external pull-up resistors to pins 10 through 13. Resistors R2 through R4 protect Port A's output drivers from shorting together when two keys of the same row are inadvertantly pressed simultaneously.

In the scanning routine, initially all the scan lines are made low and it is checked whether all the keys are in released state. If all the keys are in released state, the processor is put into sleep (power-down) mode. The interrupt-on-change feature of Port-B pins RB4 through RB7 is used to wake up the processor from sleep.

When any key is pressed, one of the sense lines becomes low. This change in the pin status causes an interrupt to wake up the microcontroller (IC2) from sleep.

Now each scan line is made low while keeping the remaining scan lines in high state. After making a scan line low, the status of the sense lines is read. I/O pin status remains unaltered during sleep mode.

Relays. To turn on/off the equipment or to lock/unlock the solenoid-operated locks, four relays (RL1 through RL4) are provided-one for each channel. Since the current-driving capacity of the port pins of PIC16F84 (IC2) is not enough to drive the relays directly, transistors T2 through T5 are used to boost the current to drive relays RL1 through RL4, respectively.

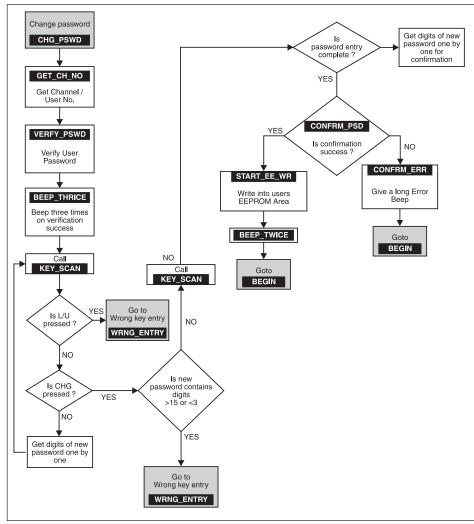


Fig. 6(b): Flow-chart for changing the password of the code lock

The bases of transistors T2 through T5 are connected to Port-B pins 6 through 9 (RB0 through RB3) through basecurrent-limiting resistors R7 through R10, respectively. The equipment or solenoid-operated locks can be connected to the normally open (N/O) contacts of these relays. Diodes D2 through D5 are used as freewheel clamp diodes. The series combination of a red LED (LED1 through LED4) and a current-limiting resistor (R11 through R14) is connected across each relay coil.

Buzzer. Pin 2 (RA3) of IC2 is connected via resistor R6 and transistor T1 to piezobuzzer PZ1. The buzzer gives a short beep when any key is pressed. In the case of a wrong data entry, the buzzer gives a long beep to indicate the error. On successful password verification, it gives three short beeps, and after successful password change, it gives two short beeps. When a wrong password is entered

consecutively for three times, the buzzer sounds an alarm.

Construction and testing

An actual-size, single-side, PCB layout for PIC16F84-based coded device switching system is shown in Fig. 4 and its component layout in Fig. 5.

The main circuit and the matrix keyboard can be assembled on separate PCBs. First check the assembled PCBs for proper connections as per the circuit diagram. Then connect the main PCB to the matrix keyboard PCB using 7-pin SIP connectors and wires, ensuring one-to-one connection between the two PCBs. Connect the external 12V DC supply with the correct polarity, without inserting the PIC microcontroller into the socket, and follow these steps:

1. Check whether +5V is available at output pin 3 of regulator IC1 (7805).

2. Now check the availability of +5V at pins 4 and 14 of IC2 before placing IC2 into the socket.

3. To check the buzzer operation, connect pin 2 of IC2 socket to +5V available at pin 3 of IC1. Now the buzzer should beep continuously.

4. Check the operation of the four relays by connecting pins 6 through 9 of IC2 socket one by one to +5V.

5. Before placing jumper JP1, check the voltage at pin 3 of IC2 using a multimeter. The meter should read +5V or logic 1. Now on placing jumper JP1, the meter should read 0V or logic 0 at pin 3.

Now remove the supply and insert the programmed PIC16F84 microcontroller into the socket and switch on the supply. After poweron, the buzzer beeps once to indicate that the microcontroller is ready to take the user data. Now you can lock/unlock or change the password as described below. Initially the four channels can be accessed using the default password '1234.'

Operating procedure

For unlocking/switching on the equipment:

1. Press the lock/unlock button (L/U) on the keypad.

2. Now enter the device number by pressing the button corresponding to the device number. The valid

device numbers are 1 to 4. For example, if you want to access device No. 1 (RL1), press button '1.'

3. Now enter your password digits one by one. Note that the default password is '1234.'

4. The buzzer gives three short beeps to indicate successful verification of the password. If the entered password is incorrect, the buzzer gives a long beep to indicate error. To try again, repeat the procedure from step 1.

5. If the entered password is correct, you can unlock or switch on device No. 1 by pressing button '1.' When you press the key, the relay corresponding to this device gets energised and it remains in this state until you lock/switch it off again.

For locking/switching off the equipment:

Follow the aforesaid steps 1 through 4 and press button '0.' Now the relay corresponding to the device you want to

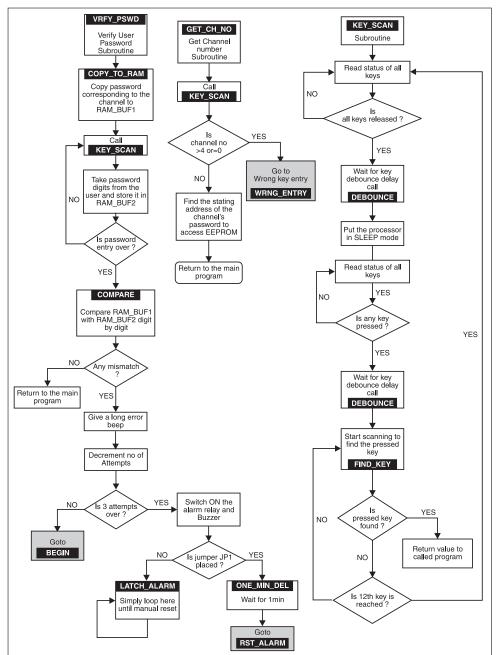


Fig. 6(c): Flow-chart for password verification, device (channel) selection and key scanning

turn off de-energises and it remains in this state until you unlock/switch it on again.

For changing the password:

1. Press the password change button (CHG) on the keypad.

- 2. Now press the device number.
- 3. Enter your current password.

4. On successful verification of the password, the buzzer gives three short beeps. If the entered password is wrong, the buzzer will give a long beep. Now if you want to try again, repeat the procedure from step 1.

5. Enter your new password. The length of the password should be between 4 and 15 digits.

6. End the password entry by pressing again CHG button.

7. Again enter your new password for confirmation. On successful confirmation, your new password gets replaced by the old password and the buzzer beeps twice to indicate successful password change. In case the password entered for confirmation is wrong, the buzzer gives a long beep to indicate error and the old password remains unaltered.

So whether you're locking, unlocking or changing the device, wrong password entry makes the buzzer to give a long error beep and the users are required to start afresh from step 1. In case you forget the password of the device, it can't be controlled until you reprogram the microcontro-ler.

Mode of operation. When anyone fails to enter the correct password in three attempts, the code lock circuit switches to alarm mode and the buzzer starts beeping continuously. All the keys pressed (for further attempts) are ignored by the code lock during alarm mode.

Placing the jumper between pin 3 (RA4) of IC2 and Ground enables the auto-reset alarm mode. Whereas removing the jumper enables the latch-up mode (see Fig. 3). If the autorest alarm mode is enabled, the code lock automatically resets after about one minute. If the latch-up alarm mode is enabled, the code lock never resets from the alarm mode until the user manually resets it by interrupting the power. Note that in the alarm mode the status of device-controlling relays remains unaltered.

Software

The software is written in Microchip's Assembly language. Fig. 6 shows the flow-chart for the program. In the flowchart, important labels and subroutine names used in the

program are also mentioned within the corresponding process boxes to enable easy understanding of the program. For instructions, you may refer to the PIC16F84 datasheet. The code is compiled and hex file is generated using MPLAB IDE. You can generate the hex file by using the MPASM.exe assembler also. The hex file generated can be burnt into the microcontroller using any PIC programmer that supports PIC16F84. We've used here PICburner to program the PIC. It is published in Electronics Project Vol-23.

CODLOCK.LST

	CODLO	CR.LJI	
MPASM 03.20 Released	CODLOCK.ASM 7-1-2004 16:25:54 PAGE 1		00062; variables
LOC OBJECT CODE L	INE SOURCE TEXT	0000000C	00063 00064 DEL_COUNT1 EQU 0X0C ;Counters used to
VALUE	00001 ;*********************************	0000000D	obtain software delay. 00065 DEL_COUNT2 EQU 0X0D
	00002;	0000000E	00066 DEL_COUNT3 EQU 0X0E
	00003 ; TITLE: "MICROCONTROLLER BASED 4 CHANNEL CODE LOCK"	0000000F	00067 KEY_IN EQU 0X0F ;Holds the value of pressed key.
	00004; PROCESSOR PIC16F84	00000010	00068 KEY_NO EQU 0X10 ;Holds key no.
	00005 ; Oscillator:XT 4MHz crystal Oscillator 00006 ; Default passward:1234 for ch1 - ch4	00000011 code.	00069 SCAN_CODE EQU 0X11 ;Holds scan
	00000; Default passward.1254 for ch1 - ch4	00000012	00070 KB_TEMP EQU 0X12 ;Temporary
	00008; Author:VIJAYA KUMAR.P	00000019	variable to hold key value 00071 RAM BUF1 PNT EQU 0X13 :Pointer reg
	00009; EMAIL:vijay_kum_p@yahoo.co.in 00010;	00000013	to RAM_BUF1
	00010,*********************************	00000014	00072 RAM_BUF2_PNT EQU 0X14 ;Pointer reg to RAM_BUF2
	00013 ;	00000015	00073 DIGIT_COUNT EQU 0X15 ;Holds no of
	00014 00015 #INCLUDE "p16f84.inc" ;Header file	00000016	digits 00074 PSD_DIGIT EQU 0X16 ;Holds passward
	inclusion directive. 00001 LIST	00000017	digit 00075 NO_OF_ATTEMPTS EQU 0X17 ;Holds no
	00002; P16F84.INC Standard Header File, Version 2.00 Microchip Technology, Inc.	00000018	of attempts 00076 CH_NO EQU 0X18 ;Holds channel/user no
	00136 LIST	00000019	00077 EEADDR_TEMP EQU 0X19 ;Temporary
	00016 00017	00000020	store to hold EEPROM addr 00078 NO_OF_BEEPS EQU 0X20 ;Holds the
	00018; NOTE: This header file consists of definations of all special function	00000021	number of beeps 00079 BUZ_DEL_CNT EQU 0X21 ;Counters used
	00019; registers (SFRs) and their associated bits.		to obtain 1min delay
	00020 00021 :	00000022 00000023	00080 TEN_SEC_CNT EQU 0X22 00081 ONE MIN CNT EQU 0X23
	00022	00000024	00082 NO_OF_DIGITS EQU 0X24 ;No of digits
	00023 ;*******Configuration bit settings******* 00024		in a passward 00083
	00025 LIST P=PIC16F84 ;processor type		00084; constant data declarations
	PIC16F84A 00026	0000030	00085 00086 RAM_BUF1 EQU 0X30 ;Starting address
2007 0001	00027CONFIG _XT_OSC &_PWRTE_ON & _CP_ON & _WDT_OFF	00000040	of RAM_BUF1 00087 RAM_BUF2 EQU 0X40 ;Starting address
	00028	0000040	of RAM_BUF2
	00029 ; SETTING : XT oscillator mode, power up timer ON, code protect on, watch dog		00088 00089
	00030; timer ÔFF		00090;*********************************
	00031 00032 :		00091 ; program starts from here as soon as you switch on the code lock circuit.
	00033; Defining Default passward. First time after		00092
	programming 16f84 you need 00034 ; to use default passward 1234 for all	0000	00093 ORG 0X0000 ;Reset vector 2823 00094 GOTO START
	4 channels.		00095 00096 ;************************************
	00035 ; 00036		00096 ;************************************
2100	00037 ORG 0X2100 ;Starting adderss of ch1's		starts from here.
2100 0001 0002 0003	passward 00038 DE 1,2,3,4 ;default passward for ch 1		00098; This ISR is encountered for every 50ms. 00099; NOTE:This ISR is used only to obtain 1
0004			minute delay.
210F 00039 210F 0004	ORG 0X210F 00040 DE D'04' ;Default passward length = 4 digits	0004	00100 00101 ORG 0X0004 ;Interrupt vector
2110	00041 00042 ORG 0X2110 ;Starting adderss of ch2's	0004 ;Dissable all interupts	138B 00102 BCF INTCON,GIE
	passward	0005 1D0B	00103 BTFSS INTCON,T0IF ;Is T0IF ==1?
2110 0001 0002 0003 0004	00043 DE 1,2,3,4 ;Default passward for ch 2	0006 0009 0007 110B	00104 RETFIE ;If No return form ISR 00105 BCF INTCON,T0IF ;If YES clear it
211F	00044 ORG 0X211F	0008 0BA2	00106 DECFSZ TEN_SEC_CNT,F ;Decrement
211F 0004	00045 DE D'04' ;Default passward length=4 digits 00046	0009 280D	TEN_SEC_CNT and test if 0 00107 GOTO LOAD_TMR0 ;If !0 goto
2120	00047 ORG 0X2120 ;Starting adderss of ch3's passward	000A 0BA3	LOAD_TMR0, if 0, 00108 DECFSZ ONE MIN CNT, F ; Decrement
2120 0001 0002 0003	00048 DE 1,2,3,4 ;Default passward for ch 3		ONE_MIN_CNT and test if 0 00109 GOTO LOAD TEN SEC :If !0 goto
0004 212F	00049 ORG 0X212F	000B 2810	LOAD_TENS_SEC
212F 0004	00050 DE D'04' ;Default passward length=4 digits 00051	000C 2825 ALARM	00110 GOTO RST_ALARM ;If 0 goto RST_ 00111
2130	00052 ORG 0X2130 ;Starting adderss of ch4's	000D	303F 00112 LOAD_TMR0 MOVLW 0X3F;Count for
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	passward 00053 DE 1,2,3,4 ;Default passward for ch 4	000E 000F	50ms 0081 00113 MOVWF TMR0 0009 00114 RETFIE
213F	00054 ORG 0X213F		00115
213F 0004	00055 DE D'04' ;Default passward length=4 digits 00056	0010 30C8 00116 0011 00A2	LOAD_TEN_SEC MOVLW 0XC8 ;Count for 10sec 00117 MOVWF TEN_SEC_CNT
	00057	0012 0009	00118 RETFIE
	00058 ;************************************		$\begin{array}{c} 00119 \\ 00120 \\ ;^{************************************$
	DECLARATIONS 00060		00121; INITIALISATION SUBROUTINE 00122
	00061		00122 00123 ; This part of the program intialises the

		00124	required ports and SFRs.	003C	100B	00190	condition BCF INTCON,RBIF ;Clear RBIF
0013		00125	INIT CLRF STATUS ;Switch to bank0		0063	00191	SLEEP ;Put the processor in Sleep mode
$\begin{array}{c} 0014 \\ 0015 \end{array}$		$00126 \\ 00127$	CLRF PORTA ;Clear PORTA CLRF PORTB ;Clear PORTB			$00192 \\ 00193$	
0016	1683	00128	BSF STATUS, RP0 ;Switch to bank1	003E	3010	00194	ANY_KEY MOVLW B'00010000' ;Clearing
0017	30F0	00129	MOVLW B'11110000' ;Sets pins of portb as iiiioooo	002E	0585	00195	PORTA pins but ANDWF PORTA, F ; Retaining the RA4
0018 0	0086	00130	MOVWF TRISB ;Where i=input & o=output	0051	0000	00195	status
0019 3	3010	00131	MOVLW B'00010000' ;Sets pins of porta	040	0806	00196	MOVF PORTB,W ;PORTB>W reg
001A (0085	00132	as oooioooo MOVWF TRISA		3AFF 1903	$00197 \\ 00198$	XORLW 0XFF ;W XOR 0XFF>W reg BTFSC STATUS,Z ;Is any key pressed ?
001B 3	3007	00133	MOVLW 0X07 ;Enable weak internal pull ups,	0043	283E	00199	GOTO ANY_KEY ; If no goto ANY_KEY
001C (0081	00134	MOVWF OPTION_REG ;asigns prescalar to TMR0 with		206C 3000	$00200 \\ 00201$	CALL DEBOUNCE; If yes debounce the key MOVLW 0X00
			00135 ; 1:256 ratio.		0090	00201	MOVWF KEY_NO ;Initialise KEY_NO to 0
001D 1 001E 1		$00136 \\ 00137$	BCF STATUS,RP0 ;Switch to bank 0 BSF INTCON,RBIE :Enable portb int on	0047	3010	$00203 \\ 00204$	FIND KEY MOVLW B'00010000'
00112	100D	00137	change		0585	$00204 \\ 00205$	ANDWF PORTA, F ; Retaining the RA4
001F 1	138B	00138	BCF INTCON,GIE ;Dissable all the	status		00000	
0020 \$	3003	00139	interrupts MOVLW 0X03 ;Max no of atempts = 3		205E 0091	$00206 \\ 00207$	CALL SCAN_TABLE ;Get the scan code MOVWF SCAN_CODE ;Move
0021	0097	00140	MOVWF NO_OF_ATTEMPTS				SCAN_CODE to W reg
0022	0008	$00141 \\ 00142$	RETURN ;Return from sub routine		3907 0485	$00208 \\ 00209$	ANDLW B'00000111'; Mask 5 MSB's IORWF PORTA, F ;w> porta while
		00142;	*******	0040	0400		Retaining the RA4 status
			The main program starts from here		0806		MOVF PORTB,W ;Read PORTB to W reg
0023	2013	$00145 \\ 00146$	START CALL INIT ;Call initalization	004E	39F0	00212	ANDLW B'11110000' ;Mask the lower nibble of PORTB
	2120		subroutine	004F	008F	00213	MOVWF KEY_IN ;Move the key value to
0024	216C	00147	CALL SHORT_BEEP ;Now the buzzer beeps once	0050	0811	00214	key_in MOVF SCAN CODE,W ;SCAN CODE>
			00148	0000	0011		Wreg
0025	1185	00149	RST_ALARM BCF PORTA,3 ;Switch off buzzer	0051	39F0	00215	ANDLW B'11110000' ;Mask lower nibble of scan code
			00150	0052	060F	00216	XORWF KEY_IN,W ;compare read key
			00151; here the program waits until L/U	0059	1002	00017	with scan code
		00152	or CHG key is pressed.		1903 285B	$00217 \\ 00218$	BTFSC STATUS,Z ;Test for Z flag GOTO RET ;If Z=1 goto RET else continue
0026	2033	00153	BEGIN CALL KEY_SCAN ;Call kb	0055	0A90	00219	INCF KEY_NO,F ;Increment key no
0027	0092	00154	scanning routine MOVWF KB_TEMP ;W>KB_TEMP		0810 3C0C	$00220 \\ 00221$	MOVF KEY_NO,W ;KEY_NO>W REG SUBLW 0X0C ; W - 12>W
0028		00155	XORLW 0X0A ;W XOR H'0A'>W		1D03	00222	BTFSS STATUS,Z ;Test whether key
0029		$\begin{array}{c} 00156 \\ 00157 \end{array}$	BTFSC STATUS,Z ;Is L/U key is pressed ?	0050	9947	00999	no=12th key
002A 2	2010	00137	GOTO LCK_UNLCK ;If yes goto LCK_UNLCK		2847 2833	$00223 \\ 00224$	GOTO FIND_KEY ;If no goto FIND_KEY GOTO KEY_SCAN ;If yes goto start new
002B		00158	MOVF KB_TEMP,W ;KB_TEMP>W			00005	scan
002C 3 002D		$00159 \\ 00160$	XORLW 0X0B ;W XOR 0B>W BTFSC STATUS,Z ;Else Is CHG key is	005B	216C	00225 buzzer	RET CALL SHORT_BEEP ;Now the will beep once
			pressed ?		0810	00226	MOVF KEY_NO,W ;Pressed Key no>w
002E 2	28FB	00161	GOTO CHG_PSWD ;If yes goto CHG_PSWD	005D	0008	$00227 \\ 00228$	RETURN ;Return from key scan
002F 2	2831	00162	GOTO WRNG_ENTRY ;Give a long error			00229	
0020	0000	00169	beep on wrng key				
0030	2020	$00163 \\ 00164$	GOTO BEGIN ;Else simply LOOP_HERE				LOOK UP TABLE FOR KEY CODE This look up table is used by the keyboard
			****				scan subroutine and look up
		00166;	the program control comes here when any wrong data entry is made.			00233;	table returns the scancode in w register when called by placing key number
		00167				00234;	in KEV NO
$ \begin{array}{c} 0031 \\ 0032 \end{array} $		$00168 \\ 00169$	WRNG_ENTRY CALL LONG_BEEP GOTO BEGIN			00235; 00236	***************************************
0002	2020	00170		005E	0810	00237	SCAN_TABLE MOVF KEY_NO,W ;KEY_NO
			**************************************	0.0517	0782	00238	>W reg ADDWF PCL,F ;PCL+W>PCL reg
		00172;		1600	0782	00238 00239	ADDWF PCL,F ;PCL+W>PCL reg
			This subroutine when called returns the		34E6	00240	RETLW B'11100110' ;Scan code for key0
		00175 ·	value of key pressed in w register and makes the buzzer to beep		34E5 34E3	$00241 \\ 00242$	RETLW B'11100101' ;Scan code for key1 RETLW B'11100011' ;Scan code for key2
			once for every key press.	0063	34D6	00243	RETLW B'11010110' ;Scan code for key3
		00176;	This routine uses the wake up on key press feature and reduces power		34D5 34D3	$00244 \\ 00245$	RETLW B'11010101' ;Scan code for key4 RETLW B'11010011' ;Scan code for key5
		00177;	consumption by the PIC while not in use		34B6	00246	RETLW B'10110110' ;Scan code for key6
			**************************************		34B5	00247	RETLW B'10110101' ;Scan code for key7 RETLW B'10110011' ;Scan code for key8
0033		$00179 \\ 00180$	KEY SCAN		34B3 3476	$00248 \\ 00249$	RETLW B'01110110';Scan code for key9
0033	3010	00181	KEY_RELEASE MOVLW B'00010000'	006A	3475	00250	RETLW B'01110101' ;Scan code for L/U key
0034 0	0585	00182	;Clearing PORTA pins but ANDWF PORTA,F; Retaining the RA4 status	006B	3473	$00251 \\ 00252$	RETLW B'01110011;Scan code for CHG key
0035 (0806	00183	MOVF PORTB,W ;Read PORTB into W reg			00253;	*****
0036 0037		$\begin{array}{c} 00184 \\ 00185 \end{array}$	ANDLW B'11110000';Mask the lower nibble XORLW B'11110000' ;W Xor 11110000				DELAY FOR DEBOUNCING THE KEY
0001	0111.0	00100	>W				This delay routine produces a key board debounce delay of 20ms
0038	1D03	00186	BTFSS STATUS,Z ;Is all keys are				**************************************
0039	2833	00187	released ? GOTO KEY_RELEASE ;If not goto	006C	301C	$00257 \\ 00258$	DEBOUNCE MOVLW 0X1C
			KEY_RELEASE	006D	008D	00259	MOVWF DEL_COUNT2
003A 003B		$00188 \\ 00189$	CALL DEBOUNCE ;If yes debounce the key MOVF PORTB,W;Clear previous mismatch		30F0 008C	$00260 \\ 00261$	KB_DLOOP1 MOVLW 0XF0 MOVWF DEL_COUNT1
-			, , , <u>r</u>				—

0070 0B8C	00262 KB_DLOOP DECFSZ DEL_COUNT1,F	00A1 2033	00337 GET_CH_NO CALL KEY_SCAN ;Ch/user
0071 2870 0072 0B8D	00263 GOTO KB_DLOOP 00264 DECFSZ DEL_COUNT2,F	00A2 0098	00338 MOVWF CH_NO ;[W]> CH_NO
0073 286E	00265 GOTO KB_DLOOP1	00A3 3A00	00339 XORLW 0X00
0074 0008	00266 RETURN 00267	00A4 1903 00A5 2831	00340 BTFSC STATUS,Z ;Is entered key is 0 ? 00341 GOTO WRNG_ENTRY ;If yes WRNG_
	00268 ;************************************	00A6 0818	ENTRY 00342 MOVF CH_NO,W ;If no CH_NO>W
	00270; When you press L/U key the program	00A7 3C04	00343 SUBLW 0X04 ;Is entered key > 4 ?
	control comes here. 00271 ;************************************	00A8 1C03 00A9 2831	00344 BTFSS STATUS,C 00345 GOTO WRNG ENTRY :If YES goto
	00271,	00A9 2001	00345 GOTO WRNG_ENTRY ;If YES goto WRNG_ENTRY
0075 20A1	00273 LCK_UNLCK CALL GET_CH_NO ;Get channel/user no	00AA 20AD	00346 CALL EEADDR_LOOKUP ;If no CALL EEADDR look up table
0076 20B4	00274 CALL VRFY_PASWD ;Call verify password subroutine	00AB 0099	00347 MOVWF EEADDR_TEMP ;[W] >EEADDR_TEMP
0077 0398	00275 DECF CH_NO,F ;Decrement CH_NO	00AC 0008	00348 RETURN
0078 0818	00276 MOVF CH_NO,W ;CH_NO>W reg		00349 00350 ;************************************
0079 0798 007A 3003	00277 ADDWF CH_NO,F ;CH_NO x 2>CH_NO 00278 MOVLW 0X03 ;Reset no_of_attempts to 3		00350; 00351; LOOK UP TABLE FOR EEADDRESS
007B 0097	00279 MOVWF NO_OF_ATTEMPTS		00352; This Lookup table returns the staring
007C 217D	00280 CALL BEEP_THRICE;Now the buzzer will beep 3 times		address of the ch's/user's password in 00353; EEPROM data memory when the channel/
	00281		user number is passed into it
007D 2033	00282 SWITCH_RELAY CALL KEY_SCAN ;Call		00354 ;*********************************
005T 0000	Key scan subroutine	004D 0010	00355
007E 0092	00283 MOVWF KB_TEMP ;Store the key val in KB_TEMP	00AD 0818 00AE 0782	00356 EEADDR_LOOKUP MOVF CH_NO,W 00357 ADDWF PCL,F
007F 3A01	00284 XORLW 0X01	00AF 0008	00358 RETURN
0080 1903	00285 BTFSC STATUS,Z ;Is key 1 is pressed ?	00B0 3400	00359 RETLW 0X00 ;Starting address of ch1's
0081 2887	00286 GOTO RLY_ON ;If yes goto RLY_ON	00P1 9410	Passward 00260 PETI W 0X10 Starting address of the
0082 0812 0083 3A00	00287 MOVF KB_TEMP,W 00288 XORLW 0X00	00B1 3410	00360 RETLW 0X10 ;Starting address of ch2's Passward
0084 1903	00289 BTFSC STATUS,Z ;Is key 0 is pressed ?	00B2 3420	00361 RETLW 0X20 ;Starting address of ch3's
0085 288A	00290 GOTO RLY_OFF ; If yes goto RLY_OFF	00 0 2 4 20	Passward DO262 PETE W OX20 Starting address of sh4/a
0086 2831	00291 GOTO WRNG_ENTRY ;If no goto WRNG_ENTRY	00B3 3430	00362 RETLW 0X30 ;Starting address of ch4's Passward
0087 208D	00292 RLY_ON CALL RLY_ON_TBL ;Call		00363 00364 ;*******
0088 2178	RLY_ON table 00293 CALL BEEP_TWICE ;Now the buzzer will		00364;
0000 0000	beep twice		00366 ; SUBROUTINE TO VERIFY PASSWARD
0089 2826	00294 GOTO BEGIN ;Goto BEGIN 00295		00367; 00368; This subroutine copies the passward saved
008A 2097	00296 RLY_OFF CALL RLY_OFF_TBL ;Call RLY_OFF table		in EEPROM into RAM_BUF1 then reads the
008B 2178	00297 CALL BEEP_TWICE ;Now the buzzer will beep twice		00369; passward digits entered by the user and stores into RAM_BUF2 then compares
008C 2826	00298 GOTO BEGIN ;Goto BEGIN		00370; RAM_BUF1 with RAM_BUF2 digit by digit.
	$\begin{array}{c} 00299\\ 00300 \\ ;^{************************************$		00371 ; Returns to the called program if the match occures for all the digits. On mismatch it
	00301 · RELAY ON TABLE		00372; gives an long error beep and decrements
	00302;**********************************		the NO_OF_ATTEMPTS by one. If 00373; NO_OF_ATTEMPTS == 0 switches the
008D 0818	00304 RLY_ON_TBL MOVF CH_NO,W		code lock into alarm mode. and further
008E 0782	00305 ADDWF PCL,F		00374; key presses will be ignored. The codelock
008F 1406	00306 BSF PORTB,0 ;Switches ON ch1's relay		comes to the normal working after 1 minute.
$\begin{array}{cccc} 0090 & 0008 \\ 0091 & 1486 \end{array}$	00307 RETURN 00308 BSF PORTB,1 ;Switches ON ch2's relay		00375; NOTE: the NO_OF_ATTEMPTS will not be 00376; decremented if the jumper is placed
0092 0008	00309 RETURN		00377 ; between RA4 and Gnd and hence will not
0093 1506	00310 BSF PORTB,2 ;Switches ON ch3's relay		switch into the alarm mode. 00378 ;************************************
$\begin{array}{cccc} 0094 & 0008 \\ 0095 & 1586 \end{array}$	00311 RETURN 00312 BSF PORTB,3 ;Switches ON ch4's relay		00378 ;************************************
0096 0008	00313 RETURN	00B4 20EB	00380 VRFY_PASWD CALL COPY_TO_RAM ;Call
	00314		COPY_TO_RAM sub routine
	00315 ;************************************	00B5 3030 00B6 3E0F	00381 MOVLW RAM_BUF1 00382 ADDLW 0X0F ;Initialize FSR to
	00310; <u>RELAT_OFF_TABLE</u> 00317;************************************	00B7 0084	00382 ADDLW 0X0F ;Initialize FSR to 00383 MOVWF FSR ;the end of RAM_BUF1
	00318	00B8 0800	00384 MOVF INDF,W ;[INDF]>W
0097 0818 0098 0782	00319 RLY_OFF_TBL MOVF CH_NO,W 00320 ADDWF PCL,F	00B9 00A4	00385 MOVWF NO_OF_DIGITS ;[W] >NO_OF_DIGITS
0099 1006	00321 BCF PORTB,0 ;Switches OFF ch1's relay	00BA 0095	00386 MOVWF DIGIT_COUNT ;[W]
009A 0008 009B 1086	00322 RETURN 00323 BCF PORTB,1 ;Switches OFF ch2's relay	00000 2040	>DIGIT_COUNT
009E 1086	00323 BCF PORTB,1 ;Switches OFF ch2's relay 00324 RETURN	00BB 3040 00BC 0084	00387 MOVLW RAM_BUF2 ;Initialise FSR to 00388 MOVWF FSR ;the starting of RAM_BUF2
009D 1106	00325 BCF PORTB,2 ;Switches OFF ch3's relay		00389
009E 0008	00326 RETURN	00BD 2033	00390 SCAN_NXT_BYTE CALL KEY_SCAN ;Call
009F 1186 00A0 0008	00327 BCF PORTB,3 ;Switches OFF ch4's relay 00328 RETURN	00BE 0080	scan key routine 00391 MOVWF INDF ;[W]>INDF
	00329	00BF 3C09	00392 SUBLW 0X09
	00330;*********************************	00C0 1C03	00393 BTFSS STATUS,C ;Is L/U or CHG key
	00331 ; This sub routine is used to take channel/ user number and it also finds the staring	00C1 2831	pressed ? 00394 GOTO WRNG_ENTRY ;If yes goto
	00332; address of ch's/user's password stored in		WRNG_ENTRY
	EEPROM using Lookup table and places it 00333; in EEADDR_TEMP. This address will be	00C2 0A84 00C3 0B95	00395 INCF FSR,F ;Increment FSR by 1 00396 DECFSZ DIGIT_COUNT,F ;Decrement
	used by COPY_TO_RAM subroutine.		DIGIT_COUNT by one, is it 0?
	00334 ; 00335 ;***********************************	00C4 28BD	00397 GOTO SCAN_NXT_BYTE ;If no go back to
	00335 ;***********************************		SCAN_NXT_BYTE 00398
		1	

	00000			00450	*****
00C5 3030	$00399 \\ 00400$	COMPARE MOVLW RAM_BUF1		00459; 00460	
0000 0000	00100	;RAM_BUF1 pointer initialisation	00EB	00461	COPY_TO_RAM
00C6 0093	00401	MOVWF RAM_BUF1_PNT	00EB 3030	00462	MOVLW RAM_BUF1 ;Initialize FSR to the
00C7 3040	00402	MOVLW RAM_BUF2	00EC 0084	00463	MOVWF FSR ;Staring address of
00C8 0094	00403	MOVWF RAM_BUF2_PNT ;RAM_BUF2	00ED 2010	00464	RAM_BUF1 MOVLW D'16'
00C9 0824	00404	pointer initialisation MOVF NO OF DIGITS,W	00ED 3010 00EE 0095	$00464 \\ 00465$	MOVEW D18 MOVWF DIGIT_COUNT ;NO_OF_DIGITS
00CA 0095	00405	MOVWF DIGIT_COUNT		00100	= 16 digits
		;[NO_OF_DIGITS]> DIGIT_COUNT	00EF 0819	00466	MOVF EEADDR_TEMP,W
00 CD 0010		00406	20 7 0, 2000		;[EEADDR_TEMP]> W
00CB 0813	00407	COMP_CONT MOVF RAM_BUF1_PNT,W	00F0 0089	00467	MOVWF EEADR ;[W]>EEADR
00CC 0084	00408	;[RAM_BUF1_PNT]>W MOVWF FSR ;[W]>FSR	00F1 1683	$00468 \\ 00469$	COPY_NXT_BYTE BSF STATUS,RP0
00CD 0800	00409	MOVF INDF,W ;passward digit> w	0011 1000	00100	;Select bank1
		reg 1 by 1	00F2 1408	00470	BSF EECON1,RD ;Enable Read mode
00CE 0096	00410	MOVWF PSD_DIGIT ;[W]>PSD_DIGIT	00F3 1283	00471	BCF STATUS, RP0 ;Select bank0
00CF 0814	00411	MOVF RAM_BUF2_PNT,W ;[RAM_BUF2_PNT]>W	00F4 0808 00F5 0080		MOVF EEDATA,W ;[EEDATA]>w
00D0 0084	00412	MOVWF FSR ;[W]>FSR	00F6 0A84		MOVWF INDF ;[W]>INDF INCF FSR,F ;Increment FSR by 1
00D1 0816	00413	MOVF PSD_DIGIT,W;[PSD_DIGIT]>W	00F7 0A89	00475	
00D2 0600	00414	XORWF INDF,W ;[W] xor [RAM_BUF2]	00F8 0B95	00476	DECFSZ DIGIT_COUNT,F;Decrement
0000 1000	00/15		00E0 00E1	00477	DIGIT_COUNT by 1, is it 0 ?
00D3 1D03 00D4 28DA	$00415 \\ 00416$	BTFSS STATUS,Z ;Is Z==1 ? GOTO WARN ;If no goto WARN	00F9 28F1	00477	GOTO COPY_NXT_BYTE ;If no goto COPY_NXT_BYTE
00D5 0A93	00410	INCF RAM_BUF1_PNT,F ;If yes increment	00FA 0008	00478	RETURN ;If yes return
		RAM_BUF1_PNT by 1		00479	, , , ,
00D6 0A94	00418	INCF RAM_BUF2_PNT,F ;Increment		00480	
00DF 0D05	00/10	RAM_BUF2_PNT by 1			**************************************
00D7 0B95	00419	DECFSZ DIGIT_COUNT,F ;Decrement DIGIT_COUNT by 1, is it 0 ?		00482;	ROUTINE TO CHG PASSWARD
00D8 28CB	00420	GOTO COMP_CONT ;If no goto compare			The program control comes here when you
		nxt digit		,	press CHG key.First this subroutine asks
00D9 0008	00421	RETURN ;If yes Return back		00485;	for channel no then old passward if the
	00422			00400	entered information is correct, it takes the
00DA 2172	$00423 \\ 00424$	WARN CALL LONG_BEEP ;Make a long		00486;	new passward.then again takes the new passward for confirmation. on confirmation
00DA 2172	00424	beep		00487 :	on confirmation success old pasward will
00DB 0B97	00425	DECFSZ NO_OF_ATTEMPTS,F; Decrement		,	be replaced by the new passward. On
		NO_OF_ATTEMPTS, is it 0 ?		00488;	confirmation error the old passward will
00DC 2826	00426	GOTO BEGIN ; If no goto BEGIN		00400	not be altered. ************************************
00DD 1585	00427	ALARM BSF PORTA,3 ;Switch ON the buzzer		00489;	
00DE 1A05	00428	BTFSC PORTA,4 ;Is the jumper placed?	00FB 20A1	00491	CHG_PSWD CALL GET_CH_NO ;Get the
00DF 28EA	00429	GOTO LATCH_ALARM ;If not goto			user/channel no
		latch_alarm	00FC 20B4	00492	CALL VRFY_PASWD ;Veryfy the old
	00430;	If yes auto reset after 1 min ************************************	00FD 217D	00493	CALL PEED THRUCE Poon thrice on
		program now inactivates the codelock for	00FD 217D	00495	CALL BEEP_THRICE ;Beep thrice on verificatin success
	00102,	1 minute	00FE 3003	00494	MOVLW 0X03 ;Reset NO_OF_ATTEMPTS
	00433;	1min = 1uS(instuction cycle) x			to 3
		256(prescalar count) x(195)tmr0 counts	00FF 0097	00495	MOVWF NO_OF_ATTEMPTS
	00434 -	x200 x6 count to be loaded in TMR0 = (256 -195)	$\begin{array}{ccc} 0100 & 3040 \\ 101 & 0084 \end{array}$	$00496 \\ 00497$	MOVLW RAM_BUF2 ;Initialise FSR to the MOVWF FSR ;Starting address of
	00434,	+2 = H'3F'	101 0004	00457	RAM BUF2
	00435;	2 is added because after moving a value to	0102 01A4	00498	CLRF NO_OF_DIGITS ;NO_OF_DIGITS=0
		TMR0 reg the actual		00499	
	00436;	incremetation of TMR0 delays by 2 TMR0	0103 2033	00500	GET_NXT_BYTE CALL KEY_SCAN ;Call
	00497 -	clock cycles.	0104 0080	00501	key scan routine MOVWF INDF ;[W]>INDF
	00437,		0105 0092	00501	MOVWF KB_TEMP ;[W]> KB_TEMP
00E0 110B	00439	ONE_MIN_DEL BCF INTCON,T0IF ;Clear	0106 3A0A	00503	XORLW 0X0A
		TMR0 interrupt flag	0107 1903	00504	BTFSC STATUS,Z ;Is L/U key pressed ?
00E1 168B	00440		0108 2831	00505	GOTO WRNG_ENTRY ;If yes goto WRNG_ENTRY
00E2 3006	00441	interrupt feature MOVLW 0X06 ;Count for one minute	0109 0812	00506	MOVF KB TEMP,W ;If no KB TEMP>W
00E3 00A3	00442	MOVWF ONE_MIN_CNT	010A 3A0B	00507	XORLW 0X0B
00E4 30C8	00443	MOVLW 0XC8 ;Count required to obtain	010B 1903	00508	BTFSC STATUS,Z ;Is CHG key pressed ?
00775 0040	00444	10s delay	010C 2910	00509	GOTO PROCEDE ; If yes goto PROCEDE
00E5 00A2 00E6 303F	$00444 \\ 00445$	MOVWF TEN_SEC_CNT MOVLW 0X3F ;Count required to obtain	010D 0AA4	00510	INCF NO_OF_DIGITS,F ;If no increment NO_OF_DIGITS by 1
0010 0001	00110	50ms delay	010E 0A84	00511	
00E7 0081	00446	MOVWF ŤMR0	010F 2903	00512	GOTO GET_NXT_BYTE ;Goto
00E8 178B	00447	BSF INTCON,GIE			GET_NXT_BYTE
00E9 28E9	$00448 \\ 00449$	INELLOOD COTO INELLOOD Simply	0110 0824	$00513 \\ 00514$	PROCEDE MOVENO OF DICITS W
00E9 28E9	00449	INFI_LOOP GOTO INFI_LOOP ;Simply loop here until 1 min	0110 0624	00514	PROCEDE MOVF NO_OF_DIGITS,W ;[NO OF DIGITS]>W
	00450 :		0111 0095	00515	MOVWF DIGIT_COUNT ;[W]
		The program control comes here only if			>DIGIT_COUNT
	00.150	the jumper is not placed.(see ckt dia)	0112 3C03	00516	SUBLW 0X03 ;Is new password
00EA 28EA	$\begin{array}{c} 00452 \\ 00453 \end{array}$	LATCH_ALARM GOTO LATCH_ALARM	$\begin{array}{cccc} 0113 & 1803 \\ 0114 & 2831 \end{array}$	$00517 \\ 00518$	BTFSC STATUS,C ;contains < 4 digits ? GOTO WRNG_ENTRY ;If yes goto
JULIA 20EA	00499	;Simply lopp here until manual reset	JIIT 2001	00010	WRNG_ENTRY
	00454;	by power interruption.	0115 0824	00519	
	00455	-			> NO_OF_DIGITS
	00456	****	0116 3C0F 0117 1C02	00520	SUBLW D'15' ;Is new password BTESS STATUS C contains
		ROUTINE TO COPY EEPROM CONTENT	0117 1C03 0118 2831	$00521 \\ 00522$	BTFSS STATUS,C ;contains> >15 digits? GOTO WRNG_ENTRY ;If yes goto
		TO RAM		00011	WRNG_ENTRY

0119 2178	00523	CALL BEEP_TWICE ;If no beep twice	0150 0045
011A 3030 011B 0084	$00524 \\ 00525$	MOVLW RAM_BUF1 ;Initialise FSR to the MOVWF FSR ;starting address of	$\begin{array}{ccc} 0152 & 2945 \\ 0153 & 0A84 \end{array}$
OID OUT	00020	RAM_BUF1	0154 1283
		00526	0155 0A89
011(1,0000	00500	00527	0156 0B95
011C 2033	00528	GET_NXT_BYTE2 CALL KEY_SCAN ;Call scan key routine	0157 2945
011D 0080	00529	MOVWF INDF ;[W]>INDF	0107 2040
011E 3C09	00530	SUBLW 0X09 ;[W] - 0x09>W	$0158 \ 1683$
011F 1C03	00531	BTFSS STATUS,C ;Is L/U key is pressed ?	0159 1108
0120 2831	00532	GOTO WRNG_ENTRY ;If yes goto WRNG_ENTRY	015A 1283 015B 217D
0121 0A84	00533	INCF FSR,F ;If no increment FSR by 1	015C 2826
0122 0B95	00534	DECFSZ DIGIT_COUNT,F ;Decrement	
0199 9010	00535	DIGIT_COUNT by 1,is it 0 ? GOTO GET_NXT_BYTE2 ;If yes goto	015D 2172
0123 291C	00000	GET_NXT_BYTE2	015E 2826
	00536		
0124 3030	00537	MOVLW RAM_BUF1 ;RAM_BUF1_PNT	
0125 0093	00538	initialisation MOVWF RAM_BUF1_PNT	
0126 3040	00539	MOVLW RAM_BUF2;RAM_BUF2_PNT	
		initialisation	
0127 0094	$\begin{array}{c} 00540 \\ 00541 \end{array}$	MOVWF RAM_BUF2_PNT MOVE NO OF DICITS Welling of digital	015F 0821 0160 008C
0128 0824	00541	MOVF NO_OF_DIGITS,W ;[No of digits] >W	$0160 \ 0080$ $0161 \ 3040$
0129 0095	00542	MOVWF DIGIT_COUNT ;[W]	0162 008D
	00540	>DIGIT_COUNT	0163 30FE
012A 0813	$00543 \\ 00544$	CONFRM PSD MOVF	0164 008E 0165 0B8E
012A 0015	00044	RAM BUF1 PNT,W	0166 2965
012B 0084	00545	MOVWF FSR ;[RAM_BUF1_PNT]>FSR	0167 0B8D
012C 0800	00546	MOVF INDF,W ;[RAM_BUF1]>W	0168 2963
012D 0096 012E 0814	$00547 \\ 00548$	MOVWF PSD_DIGIT ;[W]>PSD_DIGIT MOVF RAM_BUF2_PNT,W	0169 0B8C 016A 2961
	00010	$(RAM_BUF2_PNT) -> W$	016B 0008
012F 0084	00549	MOVWF FSR ;[W]>FSR	
0130 0816 0131 0200	$\begin{array}{c} 00550 \\ 00551 \end{array}$	MOVF PSD_DIGIT,W ;[PSD_DIGIT]>W SUBWF INDF,W ;[W]-[RAM_BUF2]>W	
0131 0200 0132 1D03	00551	BTFSS STATUS,Z ;Is	
		$[RAM_BUF1] = [RAM_BUF2]$?	016C 3001
0133 295D	00553	GOTO CONFRM_ERR ;If no goto	016D 0041
0134 0A93	00554	CONFRM_ERR INCF RAM_BUF1_PNT,F ;If yes	016D 00A1 016E 1585
		increment RAM_BUF1_PNT by 1	016F 215F
0135 0A94	00555	INCF RAM_BUF2_PNT,F ;Increment	0170 1185
0136 0B95	00556	RAM_BUF2_PNT by 1 DECFSZ DIGIT_COUNT,F ;Decrement	0171 0008
0100 0000	00000	DIGIT_COUNT by 1, is it 0?	0172 300A
0137 292A	00557	GOTO CONFRM_PSD ;If no goto	
0138 3040	00558	CONFRM_PSD MOVI W PAM_BLE2 : If yos point to the	0173 00A1 0174 1585
0139 3E0F	00558	MOVLW RAM_BUF2 ;If yes point to the ADDLW 0X0F ;end of RAM_BUF2	0174 1585 0175 215F
013A 0084	00560	MOVWF FSR	$0176 \ 1185$
013B 0824	00561	MOVF NO_OF_DIGITS,W ;Store the no of	0177 0008
013C 0080	00562	digits MOVWF INDF ;in the password at the	0178 3005
0100 0000	00002	end of	0179 00A1
013D 3040	00563	MOVLW RAM_BUF2 ;RAM_BUF2	017A 215F
013E 0084	$00564 \\ 00565$	MOVWF FSR	017B 3002
013F 3010	00566	START EE WR MOVLW D'16' ;No of	017C 2982
		bytes to write = 16	
0140 0095 0141 0819	$00567 \\ 00568$	MOVWF DIGIT_COUNT MOVF EEADDR TEMP,W ;Set initial	017D 3005 017E 00A1
0141 0019	00000	EEPROM address	017E 00A1 017F 215F
0142 0089	00569	MOVWF EEADR	0180 3003
0143 1283	00570	BCF STATUS, RP0 ;Select bank0	0101 0000
0144 138B	$\begin{array}{c} 00571 \\ 00572 \end{array}$	BCF INTCON,GIE ;Dissable all interrupts	0181 2982
0145 0800	00573	WR_EEPROM MOVF INDF,W ;[INDF]	0182 00A0
		> W	0183 3004
$0146 \ 0088 \ 0147 \ 1683$	00574	MOVWF EEDATA ;W>EEDATA BSE STATUS PRO :Soloot hank1	0184 00A1 0185 215F
0147 1683 0148 1508	$\begin{array}{c} 00575 \\ 00576 \end{array}$	BSF STATUS,RP0 ;Select bank1 BSF EECON1,WREN ;Enable write mode	0186 216C
0149 3055	00577	MOVLW 0X55	0187 0BA0
014A 0089	00578	MOVWF EECON2 ;H'55' must be written	0188 2983
014B 30AA	00579	to eecon2 MOVLW 0XAA ;to start write sequence	0189 0008
014C 0089	00580	MOVER EECON2 ;followed by H'AA'	
014D 1488	00581	BSF EECON1,WR ;Set WR bit to start	
	00582	writing	
014E 1E08	00582	POLL_EEIF BTFSS EECON1,EEIF ;Is	
		write complete ?	
014F 294E 0150 1208	00584	GOTO POLL_EEIF ;If no goto POLL_EEIF BCF EECON1,EEIF ;If yes clear EEIF bit	
0150 1208 0151 1988	$00585 \\ 00586$	BTFSC EECON1, EEIF JII yes clear EEIF DI	
		, , , , , , , , , , , , , , , , , , , ,	

	is set?
00587	GOTO WR_EEPROM ;If set write again
00588	INCF FSR,F ;Increment FSR by 1
00589	BCF STATUS,RP0 ;Select bank0 INCF EEADR,F ;Increment EEADR by 1
$00590 \\ 00591$	DECFSZ DIGIT_COUNT,F ;Decrement
00001	DIGIT_COUNT by1 ,is it 0 ?
00592	GOTO WR_EEPROM ;If NO go to write
00001	next digit.
00593	BSF STATUS,RP0 ;If yes select bank0
00594	BCF EECON1, WREN ; Dissable Write mode
00595	BCF STATUS, RP0 ;Select bank0
00596	CALL BEEP_THRICE ;Beep thrice
00597	GOTO BEGIN ;Goto BEGIN
00598	
00599	CONFRM_ERR CALL LONG_BEEP;Give a
00600	long beep on confirm Error GOTO BEGIN ;Goto BEGIN
$00600 \\ 00601$	GOTO BEGIN ,GOLO BEGIN
00602	
00603 :	**********
00604;	DELAY SUBROUTINE FOR BUZZER ON
	AND OFF TIME
00605 ;	*****
00606	BUZ_DELAY MOVF BUZ_DEL_CNT,W
00607	MOVWF DEL_COUNT1
00608	BUZ_LOOP1 MOVLW 0X40
00609	MOVWF DEL_COUNT2
$00610 \\ 00611$	BUZ_LOOP2 MOVLW 0XFE MOVWF DEL_COUNT3
00612	BUZ_LOOP3 DECFSZ DEL_COUNT3,F
00612	GOTO BUZ_LOOP3
00614	DECFSZ DEL COUNT2,F
00615	GOTO BUZ_LOOP2
00616	DECFSZ DEL_COUNT1,F
00617	GOTO BUZ_LOOP1
00618	RETURN
00619;	*****
00620;	SUBROUTINES TO SOUND BUZZER
00621;	
00622	SHORT_BEEP MOVLW 0X01 ; Subrou
00020	tine to produce a short beep
00624	MOVWF BUZ_DEL_CNT
00625	BSF PORTA.3
00626	CALL BUZ_DELAY
00627	BCF PORTA,3
00628	RETURN
00000	00629
00630	LONG_BEEP MOVLW 0X0A ;Subroutine
00631	to produce a long beep MOVWF BUZ_DEL_CNT
00632	BSF PORTA,3
00633	CALL BUZ_DELAY
00634	BCF PORTA,3
00635	RETURN
	00636
00637	BEEP_TWICE MOVLW 0X05
00638	MOVWF BUZ_DEL_CNT CALL BUZ_DELAY
$00639 \\ 00640$	
00040	MOVLW 0X02 ;Subroutine to produce 2 short beeps
00641	GOTO BEEP NOW
00642	and a prime from
00643	BEEP_THRICE MOVLW 0X05
00644	MOVWF BUZ_DEL_CNT
00645	CALL BUZ_DELAY
00646	MOVLW 0X03 ;Subroutine to produce 3
00045	short beeps
00647	GOTO BEEP_NOW
$00648 \\ 00649$	BEEP NOW MOVWE NO OF REFPS
00649	BEEP_NOW MOVWF NO_OF_BEEPS BEEP_AGAIN MOVLW 0X04
00651	MOVWF BUZ_DEL_CNT
00652	CALL BUZ_DELAY
00653	CALL SHORT_BEEP
00654	DECFSZ NO_OF_BEEPS,F
00655	GOTO BEEP_AGAIN
00656	RETURN
00657 00658	END ;The progam ends here
00658	Entre , rue progam enus nere 🗳

Readers' comments

I have the following queries:

Q1. Can I changeover from PIC16F84A to PIC16F628? PIC16F628 is a cheaper microcontroller that is pin-compatible with PIC16F84A. It is readily available from Microchip, which is already phasing out PIC16F84A for the last three years.

Q2. Is it possible to change the length of the password?

Q3. Can only one output be used? **Q4.** Can an alphanumeric keypad be used?

> Jatinder Chawla Through e-mail

The author, Vijaya Kumar P., replies:

A1. I think you are talking of older PIC16F84 and PIC16C84. At present, PIC16F84A is widely available in India. I have been informed by Microchip's technical support (e-mail: taiwan.techhelp@ microchip.com) that PIC16F84A is still available in the '2004 Products Selector Guide.' I haven't seen any phase-out note on this device. For reference, you may check out the 'Products Selector Guide' in 'Product Document List' on Microchip's website 'www.microchip.com'. I have used PIC16F84A microcontroller because EFY readers can find its programmer in Sept. 2002 issue of the magazine. Of course, you can also use PIC16F628 and PIC16F627 microcontrollers, which are pin-compatible with PIC16F84A, but this requires a few modifications in the program.

A2. It is clearly mentioned in the article that the password length can be changed from four digits to upto 15 digits as desired by the user.

A3. Yes, if you want only one channel, one output can be used. You can use any one of the channels, say, Channel 1. Then you don't need relays RL2 through RL4 and the associated components, i.e., transistors T3 through T5, resistors R8 through R10, diodes D2 through D5, and LED2 through LED4.

A4. An alphanumeric keypad cannot be used with the circuit because, to include alphanumeric characters, we'll have to use separate keys for each alphabet and numeral. This requires more number of input/output (I/O) port pins to implement the matrix keyboard. Since there are no additional free pins available in this application, the method you proposed is not possible.

Another way is to use a keypad similar to the one used in mobile handsets. Here, each key is multiplexed with a digit and one or more characters. The digit/character inputted depends upon the number of pressing actions within fixed time duration. But this type of keypad implementation requires a display device, such as LCD, to ensure that the correct key is pressed. Again, this requires more I/O pins to interface the LCD and the project becomes costly. Moreover, displaying the password entered in this case is not a secure way!

LOAD PROTECTOR WITH REMOTE SWITCHING FACILITY

S. SIVARAMAKRISHNAN

or inverters and UPS systems, the load should not be much below or above the rated power since it can cause excess heating of the output transformer windings and the active driving device and thereby damage them. Some domestic appliances also need to be protected against under-/over-voltage.

Here's an under-/over-voltage protector to protect devices from fluctuations in the mains. It also allows you to turn on/off the load through a remote handset. Its main features are:

1. It shuts down the load at under-

normal voltage, which goes off at under-/over-voltage.

Circuit description

Fig. 1 shows the block diagram of the remote-controlled load protector. Basically, it comprises a transformer, rectifier, filter, regulator and comparator along with remote switching transmitter and receiver circuitry. The remote signal transmitter is used for remote switching of the device during the normal voltage.

The AC mains is stepped down by the

receiver and protector sections.

Power supply. The circuit is powered by AC mains through fuse F1. The AC mains is stepped down by transformer X1 to deliver a secondary output of 18V-0-18V, 250mA. The transformer output is rectified by diodes D1 and D2 and filtered by capacitor C4. The filtered output is fed to IC2 and also the junction of resistor R17 and preset VR3. IC2 provides 12V regulated supply to the circuit. The output of IC2 is smoothed by capacitor C3.

Receiver. The receiver section is built around transistors T1 through T3

and IC3 through IC5. Darlington-pair phototransistor T1

is used to sense the

infrared signals. The phototransistor is sensitive to the incident radia-

tion. The incident

sult in a base current, which is

amplified by the gain

re-

photons

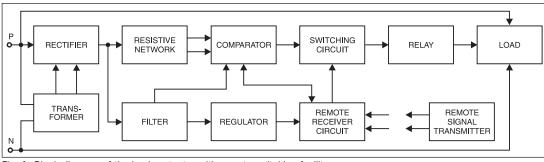


Fig. 1: Block diagram of the load protector with remote switching facility

/over-voltage.

2. After under-/over-voltage, the load is automatically restarted.

3. A visual indication is given for

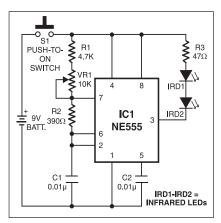


Fig. 2: Remote handset

transformer, rectified, filtered and then applied to the comparator as well as the regulator. The regulator provides 12V regulated power supply to the circuit excluding the comparator and the timer.

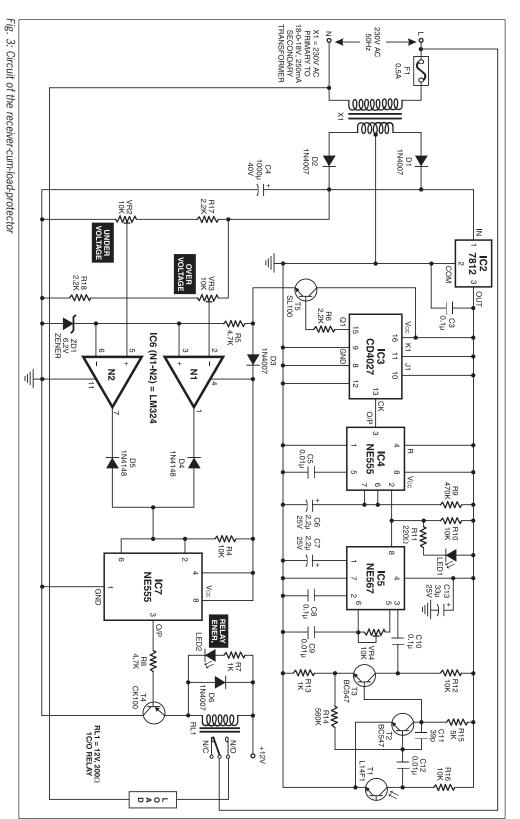
The circuit comprises two sections, namely, the transmitter (remote handset) and the receiver-cum-load protector.

The remote transmitter. Fig. 2 shows the remote transmitter built around astable multivibrator IC NE555 (IC1). Powered by a 9V battery, the remote transmitter transmits a preset frequency when push-to-on switch S1 is pressed. The modulated IR beam is received by phototransistor T1 of the receiver-cum-load protector unit.

The receiver-cum-load protector. Fig. 3 shows the receiver-cum-load protector circuit comprising power supply, of the photo-darlington.

The frequency signals from the phototransistor are amplified by npn transistors T2 and T3 and applied to phase-locked loop IC NE567 (IC5) through capacitor C10. IC NE567 is a highly stable phaselocked loop with synchronous AM lock detection and power output circuitry. It is primarily used as a tone decoder, which drives a load whenever a sustained frequency falling within its detection band is present at its self-biased input. The centre frequency of the band and the output delay are independently determined by external components.

IC5 detects the code frequency. In the absence of any input signal, the centre frequency of its internal free-running, current-controlled oscillator is determined by preset VR4 and capacitor C9. Preset VR4 is used for tuning IC5 to the desired centre frequency in the code frequency range, which should match the frequency of the code generator in the transmitter. Low-pass frequency is determined by capacitor C8. Capacitor C7 attenuates frequencies outside the detection band to eliminate spurious outputs.


The output at pin 8 of IC5 remains low as long as the transmitted code frequency is detected by IC5. LED1 lights up to indicate detection of the transmitted signal. The output of IC5 triggers monostable multivibrator IC4, whose time period is about one second. IC4, in turn, provides clock signal to the JK flip-flop IC CD4027 (IC3) wired in toggle configuration.

When IC3 gets the first clock signal, its Q1 output (pin 15) goes high. On the next clock pulse, Q1 output goes low. Q1 output of IC3 is fed to the base of transistor T5 through resistor R6. Transistor T5 provides supply to comparator IC6 and timer IC7 only when Q1 is high.

Load protector. The load protector unit is built around diodes D1 and D2, comparator IC6 and timer IC7. The comparator is built around operational amplifier IC LM324 (IC6). It consists of four independent high-gain, frequency-compensated operational amplifiers that are designed specifically to operate from a single supply over a wide range of the voltages. The reference voltage (6.2V) generated by resistor R5 and zener diode ZD1 is provided to non-inverting pin 3 and inverting pin 6 of operational amplifiers N1 and N2, respectively. Zener diode ZD1 stabilises the reference voltage. Presets VR2 and VR3 are used for setting the under- and over-voltage at non-inverting

pin 5 and inverting pin 2 of operational amplifiers N2 and N1, respectively.

Pins 2 and 6 of IC7 are pulled high through resistor R4. Diodes D4 and D5 are used for wired-OR operation. Whenever

the output of any one of the comparators (N1 or N2) goes low, the output coupled to pin 2 of IC7 goes low to trigger it. This happenes when under-/over-voltage conditions are encountered. As a result, the

output of IC7 goes high to cut off transistor T4 and de-energise relay RL1.

IC NE555 (IC7) behaves like a levelsensing device. In the normal voltage condition, its low output drives pnp transistor

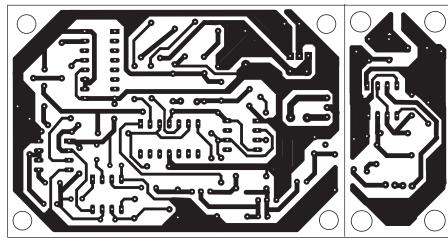


Fig. 4: Actual-size, single-side combined PCB layout for the remote handset (Fig. 2) and receivercum-load protector (Fig. 3)

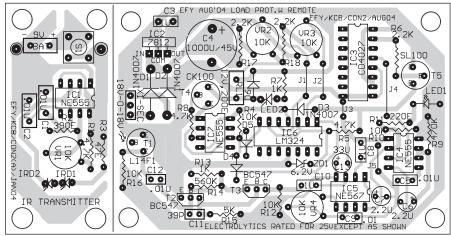


Fig. 5: Component layout for the PCB

T4 into conduction to energise relay RL1 and operate the device connected to the contacts of the relay. Diode D6 is used as a free-wheeling diode. LED2 indicates relay energisation and device 'on' condition.

Working

If mains voltage is less than 245V but more than 200V, the output of IC2 is low and relay RL1 energises via relay-driver pnp transistor T5 to provide mains to the load (device) to be protected.

When mains voltage increases beyond 245V, which also means that the sampled voltage at pin 2 becomes higher than the reference voltage (6.2V), the output of N1 at pin 1 goes low to trigger IC7. As a result, the output of IC7 goes high to de-energise the relay via relay-driver pnp transistor T4 and LED1 stops glowing to indicate that the device is switched off (protected from over-voltage).

Similarly, when mains voltage goes

92 ELECTRONICS PROJECTS Vol. 25

below 200V, which also means that the voltage at pin 5 goes below the reference voltage (6.2V), the output of N2 at pin 7 goes low to trigger IC7. The triggered IC7 provides a high output to de-energise the relay via relay-driver pnp transistor T4 and LED1 stops glowing to indicate that the load (device) is protected from under-voltage.

Remote switching of the load

At the normal mains voltage, the load (device) connected across the normallyopened (N/O) contacts of relay RL1 is in 'on' condition. Now if you want to switch off the load, simply press switch S1 on the remote handset momentarily. As a result, relay RL1 de-energises to disconnect the load from mains. This happens because the output of IC3 (pin 15) goes low on pressing switch S1 on the remote transmitter, which inhibits the power supply for IC6 and IC7, and relay RL1

]		PARTS LIST
	Semiconducto IC1, IC4, IC7 IC2	<i>rs:</i> - NE555 timer - 7812, 12V regulator
	IC3 IC5 IC6	 CD4027 dual JK flip-flop NE567 phase-locked loop LM324 comparator
	ZD1 D1-D3 D4, D5 T1	 6.2V zener diode 1N4007 rectifier diode 1N4148 switching diode L14F1 phototransistor
	T2, T3 T4 T5	- BC547 npn transistor - CK100 pnp transistor - SL100 npn transistor
	IRD1, IRD2 LED1, LED2 Resistors (all	- Infrared diodes/LEDs
	unless stated o R1, R5, R8 R2	otherwise): - 4.7-kilo-ohm - 390-ohm
,	R3 R4, R10, R12, R16	- 10-kilo-ohm
	R6, R17, R18 R7, R13 R9 R11	 2.2-kilo-ohm 1-kilo-ohm 470-kilo-ohm 220-ohm
	R11 R14 R15 VR1-VR4	 - 560-kilo-ohm - 5-kilo-ohm - 10-kilo-ohm preset
	Capacitors: C1-C2, C5, C9, C12 C3, C8, C10 C4 C6, C7 C11 C13	 0.01µF ceramic disk 0.1µF ceramic disk 1000µF, 40V electrolytic 2.2µF, 25V electrolytic 39pF ceramic disk 33µF, 25V electrolytic
	Miscellaneous E1 RL1 X1	

de-energises. Similarly, you can switch on the load again by pressing S1 momentarily, which toggles IC3 to re-establish supply for IC6 and IC7. Thereafter, the cycle repeats if switch S1 on the remote is pressed again and again. The remote handset can control devices from a distance of up to 8 metres.

Construction

The circuit of the load protector with remote switching facility can be assembled on any general-purpose PCB. However, the actual size, single-side combined PCB layout for the remote handset (Fig. 2) and the receivercum-load protector (Fig. 3) is shown in Fig. 4 and its component layout in Fig. 5.

It would help to rectify any problem if you use IC bases instead of directly soldering the ICs onto the PCB. Ensure proper contacts between pins of the IC bases and the solder points on the PCB. \Box

VOICE RECORDING AND PLAYBACK USING APR9600 CHIP

K. KRISHNA MURTY

igital voice processing chips with different features and coding techniques for speech compression and processing are available on the market from a number of semiconductor manufacturers. Advanced chips such as Texas instruments' TMS320C31 can implement various voice-processing algorithms including code-excited linear prediction, adaptive differential pulse-code modulation, A law (specified by California Council for International Trade), µ law (specified by Bell Telephone) and vector sum-excited linear prediction.

On the other hand, APR9600 singlechip voice recorder and playback device from Aplus Integrated Circuits makes use of a proprietary analogue storage technique implemented using flash nonvolatile memory process in which each cell is capable of storing up to 256 voltage levels. This technology enables the APR9600 to reproduce voice signals in their natural form.

The APR9600 is a good standalone voice recorder or playback IC with nonvolatile storage and playback capability for 32 to 60 seconds. It can record and play multiple messages at random or in sequential mode. The user can select sample rates with consequent quality and recording time trade-off. Microphone

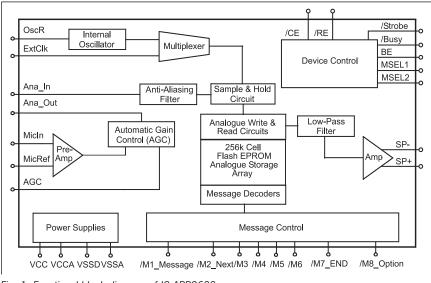


Fig. 1: Functional block diagram of IC APR9600

TABLE I Modes Selection						
Mode	MSEL1	MSEL2	/M8_Option			
Random-access, 2 fixed-duration messages	0	1	Pull this pin to Vcc through 100k resistor			
Random-access, 4 fixed-duration messages	1	0	Pull this pin to Vcc through 100k resistor			
Random-access, 8 fixed-duration messages	1	1	Becomes the /M8 message trigger input pin			
Tape-mode, normal operation	0	0	0			
Tape-mode, auto-rewind operation	0	0	1			

I	PARTS LIST
Semiconductors:	
IC1	- APR9600 voice processor
IC2	 LM386 low-power audio amplifier
T1-T3	- BC557 pnp transistor
D1	- 1N4001 rectifier diode
LED1-LED3	- Red LED

Resistors (all ¼-watt, ±5% carbon, unless stated otherwise):

otherwise).	
R1, R2, R4-R8,	
R16, R17	- 100 kilo-ohm
R3, R10	- 390-ohm
R9	- 220-kilo-ohm
R11	- 1-ohm
R12(A)	- 33-kilo-ohm
R12(B)	- 5-kilo-ohm
R13, R14	- 4.7-kilo-ohm
R15	- 1-kilo-ohm
Capacitors:	
C1, C3, C4, C6,	
C8, C9, C11	- 0.1µF ceramic disk
C2	- 4.7µF, 16V electrolytic
C5	- 22µF, 16V electrolytic
C7	- 100µF, 16V electrolytic
C10	- 0.47µF, 63V electrolytic
C12	- 220µF, 25V electrolytic
C13	- 100µF, 10V electrolytic
Miscellaneous:	
S1-S9	- Push-to-on switch
S10-S12	- On/off switch
LS1	- 8-ohm, 0.5W speaker
	- Condenser microphone

amplifier, automatic gain control (AGC) circuits, internal anti-aliasing filter, integrated output amplifier and messages management are some of the features of the APR9600 chip.

> Fig. 1 shows the functional block diagram of IC APR9600. Complete chip management is accomplished through the device control and message control blocks.

Voice signal from the microphone (see Fig. 2) is fed into the chip through a

ELECTRONICS PROJECTS Vol. 25 93

differential amplifier. It is further amplified by connecting Ana_Out (pin 21) to Ana_In (pin 20) via an external DC blocking capacitor C1. A bias signal is applied to the microphone and to save power during playback, the ground return of this bias network can be connected to the normally open side of the record switch. Both Mic., and Mic._{Ref} (pins 18 and 19) must be coupled to the microphone network through capacitors.

Recording signal from the external source can also be fed directly into the chip using Ana_In (pin 20), but the connection between Ana_In (pin 20) and Ana_out (pin 21) is still required for playback. An internal anti-aliasing filter automatically adjusts its response according to the sampling frequency selected. Then the signal is processed into the memory array through a combination of the sample-and-hold circuit and analogue read/write circuit. The incoming voice signals

are sampled and the instantaneous voltage samples are stored in the non-volatile flash memory cells in 8-bit binary encoded format.

During playback, the stored signals are retrieved from the memory, smoothed to form a continuous signal, low-pass filtered and then amplified. The signal level

TABLE II	
Reference Rosc Values and Corresponding	
Sampling Frequencies	

lth
60 sec
40 sec
32 sec

Note. Rosc table above is for reference only, different lots of ICs will have somewhat different Rosc value performance

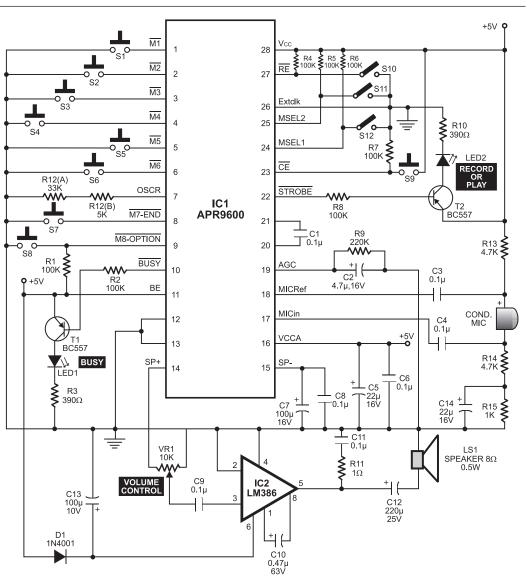


Fig. 2: Random-access mode configuration

at the speaker terminals SP+ and SP-(pins 14 and 15, respectively) is at about 12mW power into 16-ohm impedance. The output from pin 14 (SP+) is further amplified by the low-power amplifier using LM386 (IC2) as shown in the figure. The recorded message is reproduced into speaker LS1.

> An internal oscillator provides sampling clock to the APR9600. The frequency of the oscillator and sampling rate depend on the value of resistor R12 [R12(A)+R12(B)] connected across OSCR (pin 7) of the chip and the ground.

> Table II shows the sampling frequencies corresponding to different resis

tor values, as well as the resulting input bandwidth and duration of recording. Higher sampling rates improve the voice quality but they also increase the bandwidth requirement and thus reduce the duration. Lower sampling rates use fewer memory cells and effectively increase the recording/playback duration of the device. The RC network (comprising resistor R9 and capacitor C2 connected) at pin 19 sets the AGC attack time. (The attack time is defined as the delay present before the AGC circuit begins to adjust gain.)

Message management. The APR9600 chip supports the following message modes:

1. Random-access mode with 2, 4 or 8 messages within the total recording time.

2. Tape mode with two options: auto rewind and normal operation.

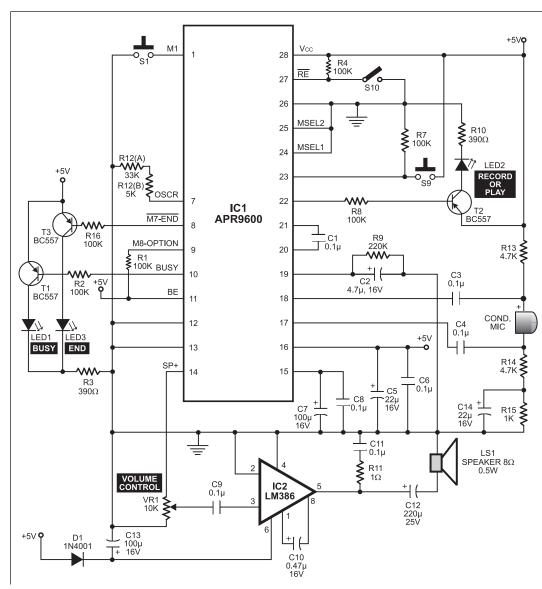


Fig. 3: Circuit for recording/playback in tape mode with auto-rewind option

The modes are defined by pins 24 (MSEL1), 25 (MSEL2) and 9 (/M8_Option) as shown in Table I, and cannot be mixed.

An important feature of the APR9600 chip is indication of changes in the device status through beeps superimposed on the device output; for example, the start of recording is indicated by a beep, so the person can now start speaking into the microphone. This feature is enabled by making pin 11 (BE) high.

General functional description. On power up, pin 23 (CE) is pulled low through resistor R7 to enable the device for operation. Toggling this pin by switch S9 also resets several message management features. Pin 27 (RE) is pulled low to enable recording and it is pulled high for playback. To start recording/playback, switch the appropriate trigger pin as described later. Glowing of LED1 indicates that the device is busy and no commands can be currently accepted. The LED is driven by pnp transistor T1, which is connected to pin 10 (Busy) of the chip. LED2 indicates recording in each individual memory segment. It is driven by pin 22 (strobe) through transistor T2.

Random-access mode

As mentioned earlier, the random-access mode supports 2, 4 or 8 messages of fixed durations. It allows easy indexing of messages as they can be recorded or played randomly. The length of each message is the total recording length available (as defined by the selected sampling rate) divided by the total number of memory segments/tracks enabled (as per Table I).

Recording of sound. The circuit for recording/playback of eight fixed-duration messages in randomaccess mode is shown in Fig. 2. Pins 9 (M8_ Option), 24 (MSEL1) and 25 (MSEL2) are pulled high through resistors R1, R6 and R5, respectively. When switch S10 is closed, record pin 27 (RE) goes low to enable recording of the message from the microphone. The maximum length of the eight sound tracks is 7.5 seconds each.

Now to start recording the first message, press switch S1 and hold it in this position. A beep sound is heard and LED2 blinks. You can now speak into the condenser mic. The recording will terminate if switch S1 is released or if the recording time exceeds 7.5 seconds. Similarly, press switches S2 through S8 to record other sound tracks. For recording of two or four sound tracks of fixed

duration, the status of pins 9, 24 and 25 is as per Table I.

Playback of sound tracks. Open switch S10 to make pin 27 high while keeping other switches in the same positions as in recording. Toggling switches S1 through S8 causes playback of particular sound tracks. Pressing the same switch again or switch S9 terminates playback of the sound track. Pressing any other switch (S1 through S8) while a sound track is being played causes a new sound track to be played. If the switch is held pressed, the particular sound track will play continuously.

Tape mode

The tape mode operation is much like the conventional cassette tape

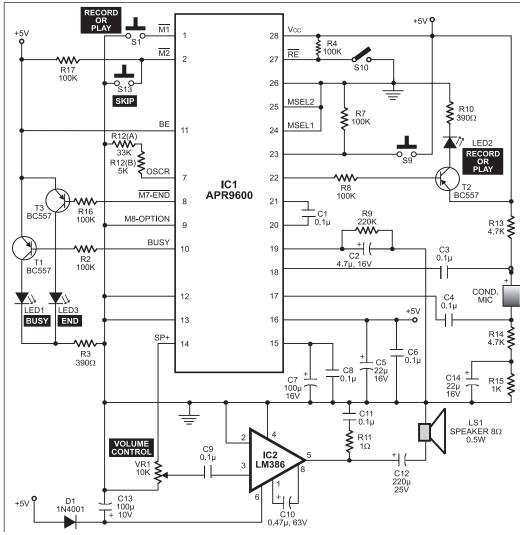


Fig. 4: Circuit for recording/playback in tape mode with normal option

recorder, but with auto-rewind and normal operation options. In auto-rewind mode, the device automatically rewinds to the beginning of the message immediately after recording or playing the message. In normal mode, it must be switched for rewind.

Sound recording in tape mode with auto-rewind option. Fig. 3 shows the circuit for recording/playback in tape mode with auto-rewind option. In this configuration, pins 24 (MSEL1) and 25 (MSEL2) are connected to ground, whereas pin 9 is pulled high through resistor R1. Close switch S10 to enable the recording of message. Press switch S9 to reset the sound track counter to zero. Now press switch S1 and hold it in this position. A beep sound is heard and LED2 starts blinking. This means you can speak into the mic. Recording will terminate when switch S1 is released or if the recording time exceeds

Fig. 5: Combined actual-size, single-side PCB for circuits of Figs 2, 3 and 4

60 seconds. Press switch S1 again and again to record second, third, fourth and other consecutive sound tracks. Each sound track may have a different length but the total length of all sound tracks cannot exceed 60 seconds. When LED3 lights up during recording, it indicates the end of memory array.

Playback in tape mode with auto-rewind option. Open switch S10 to pull pin 27 high while keeping other switches in the same positions as applicable during recording. Toggle switch S1 repeatedly to play consecutive sound tracks. Press switch S9 to reset the sound track counter to zero. During playback, LED3 indicates that all recorded messages have been played.

Recording in tape mode with normal option. Fig. 4 shows the circuit for recording/ playback in tape mode with normal option. Connect pins 24 (MSEL1), 25 (MSEL2) and 9 (M8_ option) to ground. Close

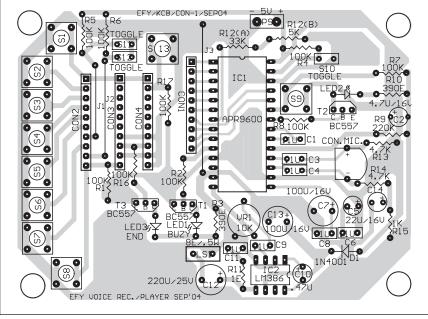
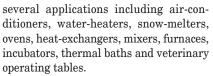


Fig. 6: Component layout for the PCB

switch S10 to enable the recording of message. Press switch S9 to reset the sound track counter to zero. The normal-mode recording is similar to the rewind-mode recording, except that after swich S1 is released, the sound counter doesn't increment itself to the next sound track location. To record the first sound track, press switch S1 and hold it in this position. A beep sounds and LED2 blinks. Now you can speak into the microphone. To record the next message, release switch S1 and toggle switch S13. Now press switch S1 again and hold in this position. A beep sounds and LED2 blinks. This means you can speak into the microphone to record the message. In case you press switch S1 without toggling switch S13 to record the message, the message will be recorded at the location of the first message.

Playback in tape mode with normal option. Open switch S10 to pull pin 27 high while keeping other switches in the same positions as during recording operation. First, press switch S9 to reset the sound track counter to zero. Now momentarily press switch S1 to play the first sound track. Momentarily pressing of switch S1 again and again will still play the first sound track. The sound track counter can be incremented to play the next sound track by momentarily pressing switch S13.

The combined actual-size, single-side PCB for the circuits of Figs 2, 3 and 4 is shown in Fig. 5 and its component layout in Fig. 6.


To obtain the configuration of Fig. 2, connect connector Con1 to Con2 using burgstick connectors with ribbon cable or simply using jumper wires. Similarly, configuration of Fig. 3 or Fig. 4 can be realised by connecting Con1 to Con3 or Con4. Note that switch S1 is common for all configurations. \Box

DYNAMIC TEMPERATURE INDICATOR AND CONTROLLER

NIRANJANA ASHOK AND SREEJA MENON

Here's a standalone digital thermometer that also controls the temperature of the heating element of a device according to its requirement. Use of embedded technology makes this closed-loop feedback control system efficient and reliable. Microcontroller (PIC16F73) allows dynamic and faster control. A temperature-controller knob and liquid crystal display (LCD) make the system user-friendly. The sensed and set temperature values are simultaneously displayed on the LCD panel in Kelvin scale.

The circuit is programmed for 'on'/off control. It is very compact using few components and can be implemented for

PIC16F73 microcontroller is the heart of the circuit as it controls all the functions. Fig. 1 shows the pin configuration of PIC16F73 microcontroller.

The circuit

Fig. 2 shows the functional block diagram of the PIC16F73-based dynamic temperature controller. The temperature transducer (AD590) senses the temperature and converts it into an

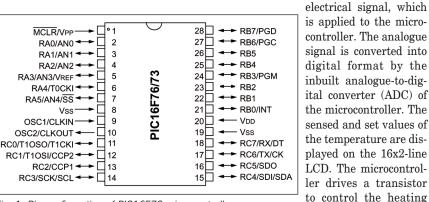
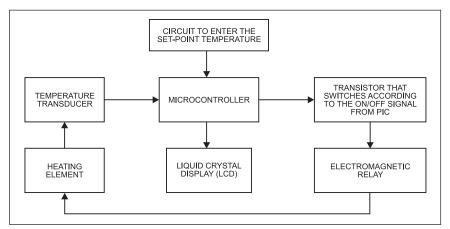
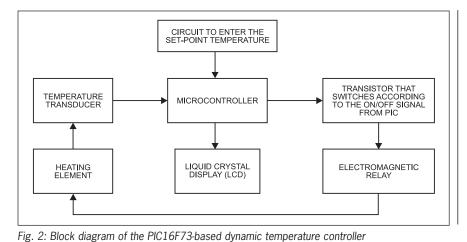


Fig. 1: Pin configuration of PIC16F73 microcontroller




Fig. 2: Block diagram of the PIC16F73-based dynamic temperature controller

	PARTS LIST	
Semiconduct	ors:	
IC1	- 7812, 12V regulator	
IC2	- 7805, 5V regulator	
IC3	- PIC16F73 microcontroller	
T1	- SL100 npn transistor	
D1-D5	- 1N4007 rectifier diode	
AD590	- Temperature sensor	
LED1	- Red LED	
LED2	- Green LED	
	- 16×2-line LCD	
Resistors (all ¼-watt, ±5% carbon,		
unless stated	otherwise):	
R1, R8	- 1-kilo-ohm	
R2, R3, R6,		
R7	- 10-kilo-ohm	
R4	- 3.9-kilo-ohm	
R5	- 15-kilo-ohm	
VR1	- 10-kilo-ohm potmeter	
VR2	- 10-kilo-ohm preset	
Capacitors:		
C1	- 1000µF, 35V electrolytic	
C2	- 0.33µF ceramic	
C3-C6	- 0.33µF ceramic	
C7	- 100µF, 100V electrolytic	
Miscellaneous:		
X1	- 230V AC primary to 7.5V-	
	0-7.5V, 250mA secondary	
	transformer	
X	- 5MHz crystal	
RL1	- 12V, 200-ohm, 1 C/O relay	
S1	- On/off switch	

element with the help of an electromagnetic relay.

PIC16F73 is an 8-bit, low-cost, highperformance flash microcontroller. Its key features are 4k words of flash program memory, 192 bytes of data RAM, eleven interrupts, three I/O ports, 8-bit ADC and only 35 powerful single-cycle instructions (each 14-bit wide). The ADC simplifies the overall embedded system design by providing a direct interface for temperature, pressure, motion and other sensors. The set temperature value can be varied from 253°K to 430°K using an external knob on the front panel of the cabinet.

Fig. 3 shows the circuit of PIC16F73 microcontroller-based dynamic temperature controller. The temperature sensor (AD590) outputs a current of 1 μ A/°K.

PIC16F73 microcontroller is a 28-pin IC with three input/output ports: port A (RA0 through RA5), port B (RB0 through RB7) and port C (RC0 through RC7).

Port-A pins 3 (RA1) and 5 (RA3) are programmed as analogue inputs. The inbuilt 8-bit ADC converts the analogue input signal into 8-bit digital equivalent output. Its analogue reference voltage is software-selectable to either the positive supply voltage of the device (Vcc) or the voltage level of RA3 pin. Here, Vcc (5V) is selected as the analogue reference voltage.

Pins 3 (RA1) and 5 (RA3) are pro-

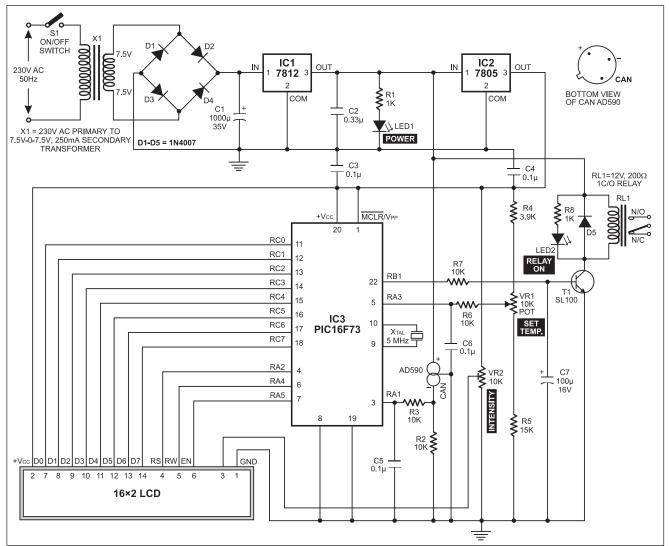


Fig. 3: Circuit of PIC16F73 microcontroller-based dynamic temperature controller

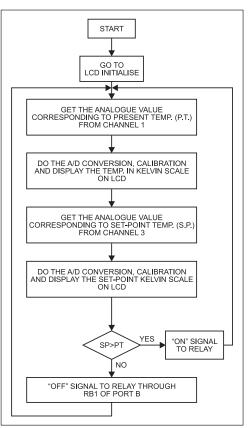
A high-impedance constant current is delivered for a supply voltage between 4V and 30V. The sensing range is linear from 218°K (-55°C) to 423°K (+150°C). A 10-kilo-ohm resistor is used to convert the

current from the sensor into voltage with a sensitivity of 1V/°K (1 μ A/°K×1000). Hence, the voltage range is 2.18V to 4.23V. This voltage is fed to pin 3 (RA1) of the microcontroller.

grammed to sense the analogue voltages corresponding to the sensed and set temperature values, respectively. The voltage corresponding to the set temperature is obtained by means of a potential divider

network comprising a potentiometer (VR1) and two fixed resistors (R4 and R5). The variable terminal of the potentiometer is connected to pin 5 (RA3) of the microcontroller and the shaft is rotated by the user to vary the set-point temperature that is visible on the LCD.

The microcontroller has been programmed to sense the analogue voltages corresponding to the sensed and set temperature values. The sensed voltages are manipulated such that the corresponding temperature values are displayed on the LCD by sending out the corresponding data signals through pins 11 through 18 (RC0 through RC7) and control signals through pins 4, 6 and 7 (RA2, RA4 and RA5) of the microcontroller. Then the sensed temperature value is compared with the set-point temperature value. Pin 22 (RB1) of the microcontroller goes high if the set-point temperature is higher than the sensed temperature. This pin has been programmed as an output to control the relay through transistor T1. The relay contacts are connected to the heating element.


Data is sent to the LCD's data pins 7 through 14. Control signals required before each data transmission are sent to pins 4, 5 and 6 (RS, R/W and Enable) of the LCD.

Working of the circuit

The mains supply is stepped down by transformer X1 to deliver a secondary output of 7.5V-0-7.5V AC, 250 mA. The transformer output is rectified by a full-wave rectifier comprising diodes D1 through D4 and filtered by capacitor C1. ICs 7812 (IC1) and 7805 (IC2) provide regulated 12V and 5V power supplies. Capacitors C2 and C4 bypass any ripple in the regulated outputs. LED1 gives power-'on' indication when current flows through resistor R1.

The 12V regulated supply is used for driving the temperature sensor (AD590). AD590 has three terminals, namely, '+', '-' and 'CAN.' The '+' terminal is connected to the 12V power supply and the 'CAN' terminal is grounded. The current output obtained from the '-' terminal is converted into voltage using resistor R2 (10 kilo-ohms). This voltage is applied to pin 3 (RA1) of the microcontroller.

The potential divider network comprising resistor R4 (4-kilo-ohm), potentiometer VR1 (10-kilo-ohm) Fig. 4: Flow-chart of the program and resistor R5 (15-kilo-ohm) is connected across regulated 5V supply. The

variable terminal of potentiometer VR1 is connected to pin 5 of the microcontroller.

Capacitors C5 through C7 filter out the noise. A 5MHz crystal (X_{TAL}) connected between pins 9 and 10 of the microcontroller provides clock frequency.

Register-select pin 4, R/W pin 5 and Enable pin 6 of the LCD are connected to pins 4, 6 and 7 of the microcontroller, respectively, and data pins 7 through 14 are connected to pins 11 through 18, respectively. Pin 3 of the LCD is used to control the contrast by using preset VR2.

The relay is connected between +12V and the collector of transistor T1. When pin 22 of the microcontroller is high, transistor T1 saturates and the relay energises to

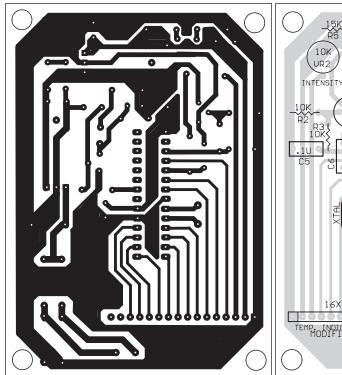
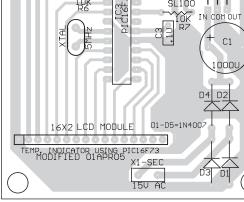



Fig. 5: Actual-size, single-side PCB layout for temperature indicator using PIC16F73

EFY/KCB/CON2/SEP04

1000

В

SL100

Ύόκ

TC1

7812

IN COM OUT

350

1 O K

VR1

UI DA

Fig. 6: Component layout for the PCB

switch the device 'on.' When pin 22 is low, transistor T1 cuts off and the relay de-energises to turn the device 'off.' Diode D5 is used here as a free-wheeling diode.

Programming the microcontroller

An El Cheapo programmer circuit (available on 'www.myke.com elcheapo .htm') has been used to program the microco-ntroller. The program is written as '.asm' file and assembled using MPLAB IDE for generating '.hex' file. The MPLAB IDE assembler can be downloaded from the Website of Microchip (www.microchip.com), the manufacturer of the PIC microc-ontroller. (Note. The datash-eet of PIC16F73 and other relevant files have been included in CD.) The simulator gives the hex code of the program, which is then burnt into the microcontroller using the parallel port of the computer interfaced to the PIC programmer. The programmed micr-ocontroller is then placed in the PCB.

Fig. 4 shows the flow-chart of the program. The microco-ntroller is programmed to give various functional commands with delays for proper initialisation of the LCD. The control signals for the LCD are given from Port A (RA1) of the microcontroller. The analogue voltage corresponding to the sensed temperature given to Port A (RA1) is converted into a digital value and stored in the micro-controller. A binary value of '255' corresponds to 5V (500 kilo-ohms). Based on this relation, calibration is done to extract the digits of the sensed temperature value in degree Kelvin. These digits are then sent from Port C of the microcontroller to the data lines of the LCD.

Similarly, the set temperature is displayed on the LCD. The difference between the sensed and set temperature values is calculated and accordingly RB1 pin of Port B goes high or low to control the relay.

Construction and testing

An actual-size, single-side PCB layout for the dynamic temperature controller using PIC16F73 is shown in Fig. 5 and its component layout in Fig. 6. After making the PCB, check whether all the tracks are as per the circuit diagram. If the tracks are correct, solder the components to the board. Place AD590 close to the soldering iron. Now switch on the power supply and check voltages at various points before placing the microcontroller into the circuit. Taking into consideration the sizes of the various components and the way they have been placed, select the dimensions of the cabinet for the device. Put the entire circuit inside the cabinet and test the working of the circuit.

When burning the program into the microcontroller, use power supply with a proper current limiter to prevent damage to the parallel port of the computer as well as the microcontroller. The analogue voltage to the microcontroller should not be given directly from the power supply, as occasional spikes in the power supply may damage the microcontroller. Instead, you can provide the analogue voltage by means of a potentiometer connected across the required voltage.

Fluctuations visible on the LCD, especially when the sensed temperature value equals the set temperature value, can be eliminated by connecting capacitors between the supply and the ground to bypass the AC interference. Make sure that a pin configured as output is not given an input signal by chance.

Note. In EFY Lab, we used soldering iron as the heating element. The device was modeled to give an 'on'/'off' signal corresponding to the sensed and set-point temperature. When the sensed temperature was below the set temperature, the soldering iron got switched 'on,' and when the sensed temperature crossed the set temperature value, the soldering iron got switched off.

00001 LIST P=16F73 0007 0082 00VVWF TRISA 00001 LIST 0007 0085 0042 MOVWF TRISA 00002 INCLUDE "p16f73.INC" 0008 0187 0044 CLRF TRISE PORT CA S OUTPUT DATA PORT TO 00002 :P16F73.INC Standard Header File, Version 1.00 0004 0187 0044 CLRF TRISE 00044 CLRF TRISE 00044 OUVWF ADCON1 007 3F2 0003 -CONFIG - HS_OSC & WDT_OFF & PWRTE_ON 0004 00044 OUVWF ADCON1 iog to bank0 0000020 00004 CLR FANNORAM EQU H20' 0001 1AB 0005 CER COUNTER ial these are delay loops 0000021 00064 ADL 0007 0005 CLR COUNTER ial these are delay loops 0000021 00066 ADL 0007 0012 2026 00055 CALL CLEAR AD ISPLAY 0000022 00006 TREN 00017 2026 00055 CALL CLEAR AD ISPLAY 00000023 00015 CALR 0015			T	EMP.LST			
00001 LIST P=16F73.inc" 0007 0005 00043 CLRY FIRSG PORTC AS OUTPUT DATA PORT TO 00002 P16F73.Inc" 0008 0187 00043 CLRY FIRSG PORTC AS OUTPUT DATA PORT TO 000002 P16F73.Inc" 0008 0187 00043 CLRY FIRSG PORTC AS OUTPUT DATA PORT TO 000002 P16F73.Inc" 0008 0186 00044 CLRY FIRSG PORTC AS OUTPUT DATA PORT TO 000002 0187 CONFIG HS OSC & WDT_OFF & PWRTE_ON 0004 BORT STATUS.RPO its of bank0 0000002 00006 AD I 0006 0001 CLRY COUNTO ital Hese are delay loops 0000021 00007 ADUSER 0007 2012 00032 CALL MSCOUNTER 00000022 00008 THK1 0010 2026 00033 CALL FIRSC PORT AS OUTPUT 00000023 00001 THK1 0011 2026 00035 CALL FIRSC PORT AS OUTPUT 00000025 00011 THK1 0017 COUNT0 it	LOC OBJE	CT CODE	LINE SOURCE TEXT VALUE	0006	300A		MOVLW B'00001010' ;to set ra1(present)& ra3(user-defined) as
000002 INCLUDE 'plof73.inc' 0008 0187 0004 CLRF 'TRISC 'PORTC AS OUTPUT DATA PORT TO 00001 LIST 0009 0186 0004 CLRF TRISC 'PORTC AS OUTPUT DATA PORT TO 00002 'PI6F73.INC Standard Header File, Version 1.00 0004 3004 0004 0004 0004 007 3FF2 LIST 0008 CONFIG BANKORAM EQU H20' 000 0000 0000 10000 0000 0000 000000 00000 00000 00000 00000 000000 000000		00001	LIST P-16F73	0007	0085		MOVWF TRISA
00001 LIST 0000 20187 0004 CLRF TRISB 000002 20187 0004 00044 CLRF TRISB 0000020 00045 00047 00047 00047 0000020 00046 BANKRAM EQU H20' 0004 BANKRAM EQU H20' 0006 0000020 00006 AD1 0007 AD17 0006 00067 00049 BANKRAM EQU H20' 0006 00049 BANKRAM EQU H20' 0006 00049 BANKRAM EQU H20' 0001 1283 00048 BCF STATUS,RP0 to go to bank0 00000021 00006 AD1 0005 CLRF COUNTER 0001 1283 00048 BCF STATUS,RP0 to go to bank0 00000021 00007 ADUSER 0001 2032 00044 CLRF COUNTER 0016 2044 CLRF COUNTER 0006 ADU 00000023 00009 TIME1 0011 2033 00056 CALL CHARA CTRE NTRY 0000028 0000028 00015 CALL CHARA CTRE NTRY 0000028							
Microchip Technology, Inc. idig i/p(rn3,rå4&ra5) 007 3FP2 0003 CONFIG HS_OSC & WDT_OFF & PWRTE_ON 0006 0004 BCK STATUS, RPO :to go to bank0 00000020 00006 CONFIG HS_OSC & WDT_OFF & PWRTE_ON 0001 1283 00045 BCK STATUS, RPO :to go to bank0 00000020 00006 CLLOCK BANK0RAM EQU H20' :all these are delay loops :all these are delay loops 00000021 00007 ADUSER 0001 1206 00052 CALL TAKUS 00000023 00009 TIME1 0010 2026 00053 CALL CLEAR DISPLAY 00000025 00011 FIM 0012 2026 00053 CALL CLEAR DISPLAY 00000026 00011 FIM 0015 2048 00055 CALL DERSENT 00000027 00013 A 0015 2046 00065 CALL DERSENT 00000028 00015 C3 0018 1803 00062 CALL DERSENT 000000022 00018 COUNTER <td></td> <td></td> <td>LIST</td> <td></td> <td></td> <td></td> <td></td>			LIST				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		00002	; P16F73.INC Standard Header File, Version 1.00 Microchip Technology, Inc.	000A	3004		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			LIST				MOVWF ADCON1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1283		BCF STATUS,RP0 ;to go to bank0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00000020		BANK0RAM EQU H'20'				INITIALIZE ;*** LCD Initialization
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
00000023 00009 TIME2 0011 203A 00054 CALL FUNCTIONSET 00000025 00011 FIN 0012 202C 00055 CALL CHARACTER ENTRY 00000026 00012 CONFU 0013 2033 00056 CALL CHARACTER ENTRY 00000026 00014 B3 0015 00058 BEGIN ;beginning the proper function 00000020 00016 REM 0015 2048 00059 CALL DISPLAY 00000020 00016 REM 0016 2066 00660 CALL PRESENT 00000020 00018 COUNT 0018 1803 00062 BTPSC STATUS,0 00000020 00019 COUNTER 0018 2895 00066 GOUT STO 00000021 00012 COUNTER 0016 2068 MORE GOUT STO GOUT STO 00000031 00022 2 001 0016 2060 MOVWF TIME1 00000033 00025 2 0010							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							CALL FUNCTIONSET
00000025 00011 FIN 0013 2033 00056 CALL CLEAR DISPLAY 00000026 00013 A 0014 2041 00057 CALL DISPLAYON 00000027 00013 A 0015 2048 00056 CALL DISPLAYON 00000028 00014 B3 0015 2048 00056 CALL DISPLAY 00000020 00016 REM 0017 2060 0061 CALL CHECK 00000020 00016 REM 0017 2068 00060 CALL TRESENT 00000020 00018 COUNT 0018 1803 00052 BTFSC STATUS,0 00000021 00102 COUNTER 0018 2089 00064 CALL TENS 00000022 00202 COUNTER 0018 2089 00065 GOTO SUBTRACT 00000023 0022 A 0016 0016 CALL TENS 0016 00000033 0022 C 0010 0020 0005 GOTO SUBTRACT							
00000026 00012 CONFU 0014 2041 00057 CALL DISPLAYON 00000027 00013 A 0015 00058 BEGIN ;beginning the proper function 00000028 00014 B3 0015 2048 00057 CALL DISPLAY 00000029 00017 COUNT1 0017 206D 00061 CALL CHECK 00000020 00017 COUNT1 0017 206D 00061 CALL HUNDREDS 00000021 00019 COUNT0 0018 1803 00062 BTFSC STATUS,0 00000022 00020 COUNTER 0014 2089 00066 CALL HUNDREDS 00000022 00022 A1 COUNTER 0018 2895 00066 GOUTO SUBTRACT 00000032 00022 A1 COUNTER ,***150ms counter before LCD initia 00000033 00225 C2 0011 0042 00071 LOOP1 MOVLW D'124' 00000034 0026 B2 0011 0042							
00000027 00013 A 0015 0005 BEGIN ;beginning the proper function 00000028 00014 B3 0015 2048 00059 CALL DISPLAY 00000024 00016 REM 0017 206D 00061 CALL PRESENT 00000020 00013 COUNT 0018 2048 00062 BTFSC STATUS,0 00000020 00019 COUNTO 0018 2089 00064 CALL TENS SOUTO 00000027 00021 COUNTER 0018 2895 00065 GOTO SUBTRACT 00000032 00022 A1 001C 00068 MSCUNTER 00067 00000032 00024 C1 001C 00068 MSCUNTER **** 150ms counter before LCD initia 00000033 00025 C2 0011 0042 00074 MOVWF TIME2,F 00000034 00028 RANGE 0016 0043 00072 MOVWF TIME2,F	00000026						
00000029 0015 C3 0016 2068 00060 CALL PRESENT 0000002A 00016 REM 0017 206D 00016 CALL CHECK 0000002C 00018 COUNT 0018 206D 00062 CALL TENS 0000002D 00019 COUNTO 0018 2895 00066 CALL TENS 0000002F 00021 COUNTER 0018 2895 00066 GOTO SUBTRACT 00000031 00023 B1 0016 2068 MSCUNTER 00067 0000032 00024 C1 0016 302C 00068 MSCUNTER ;*** 150ms counter before LCD initia 00000033 00025 C2 0011 0042 00070 MOVWF TIME1 00000034 00026 B2 0016 0020 0007 MOVWF TIME2 00000035 00027 A2 0017 0043 0074 DECFSZ TIME2,F 00000036 00028 RANGE 0021 08A3	00000027			0015		00058	BEGIN ;beginning the proper function
0000002A 00016 REM 0017 COLUNT1 CALL CHECK 0000002B 00017 COUNT1 0018 1803 00062 ETFSC STATUS,0 0000002D 00019 COUNT0 0018 207E 00063 CALL HUNDREDS 0000002F 00021 COUNTER 0018 2899 00066 CALL TENS 0000002F 00021 COUNTER 0016 0018 2895 00066 00000032 00024 C1 0016 0016 MOVLW D'300' 00000033 00025 C2 0016 0017 0007 MOVWF TIME1 00000034 00026 B2 0017 0017 0007 MOVWF TIME2 00000035 00027 A2 0018 307C 00071 LOOP1 MOVLW D'124' 00000035 00027 A2 0018 30074 DECFSZ TIME2,F 00000030 00031 E EQU H'05' 0022 08A2 00075 GOTO LOOP1 </td <td>00000028</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	00000028						
0000002B 00017 COUNT1 0018 1803 00062 BTFSC STATUS,0 0000002C 00019 COUNT0 0019 207E 00063 CALL HUNDREDS 0000002E 00020 COUNTER 0018 2895 00064 CALL HUNDREDS 00000030 00022 AI 0018 2895 00066 CALL TENS 0000031 00022 AI 0018 2895 00066 CML HUNDREDS 0000032 00024 C1 0016 00066 00066 0000033 0025 C2 0011 0042 00071 COUNTER 00000035 00027 A2 0012 0027 00071 LOOPI MOVLW D'124' 00000030 0028 RANGE 0021 0BA3 00074 DOP2 TIME2,F 0000004 00031 E EQU H'05' 0022 2820 00075 GOTO LOOP1 0000004 0032 RW EQU H'04' 0026 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
0000002C 0018 COUNT 0019 207E 00033 CALL HUNDREDS 000002D 00014 2089 00064 CALL TENS 00065 000002F 00021 COUNTER 0018 2895 00066 0000002F 00021 COUNTER 0018 2895 00066 0000031 00023 B1 001C 00068 MSCUUYTER ;*** 150ms counter before LCD initia 00000032 00024 C1 001C 0012 00070 MOVLW D'300' 00000033 00025 C2 001F 0012 00070 MOVLW D'300' 00000034 00026 B2 001F 0012 00072 MOVWF TIME2,F 00000035 00027 A2 001F 0043 00074 DECFSZ TIME2,F 0000004 00031 E EQU H'05' 0022 2810 00076 DECFSZ TIME2,F 0000000 00033 RC0 EQU H'04' 0022<							
0000002D 0019 COUNTO 0014 2089 0064 CALL TENS 0000002E 00021 COUNTER 0018 2089 0066 GOTO SUBTRACT 00000030 00022 A1 0016 00060 00060 00066 00000031 00023 B1 001C 00068 MOVLW D'300' 000001 00000032 00024 C1 001E 302C 00069 MOVLW D'300' 00000033 00025 C2 001E 307C 00071 LOOP1 MOVLW D'124' 00000036 00027 A2 001F 00A3 00073 LOOP1 MOVLW D'124' 00000036 00027 A2 001F 00A3 00074 DECFSZ TIME2.F 0000004 00031 E EQU H'05' 0022 2820 00075 GOTO LOOP1 00OP1 DOOP2 0000004 0032 RW EQU H'04' 0024 281E 00076 DECFSZ TIME1							
0000002E 00020 COUNTER 001B 2895 00066 0000002F 00021 COUNTER1 00066 00066 00000031 00023 B1 001C 00068 MSCOUNTER ;*** 150ms counter before LCD initia 00000031 00023 B1 001C 0026 MOVLW D'300' 00000032 00024 C1 001C 302C 00066 MOVLW D'300' 00000033 00025 C2 001D 00A2 00070 MOVLW D'124' 00000036 00028 RANGE 001E 307C 00071 LOOP1 MOVLW D'124' 00000036 00028 RANGE 001E 0077 MOVWF TIME2,F 0000004 00029 ENDC 0022 2820 00075 GOTO LOOP2 0000005 00031 E EQU H'02' 0022 2820 00076 DECFSZ TIME2,F 00000000 0033 RC0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
00000030 00022 A1 0000 00000031 00023 B1 001C 00068 MSCOUNTER ;***150ms counter before LCD initia 00000032 00024 C1 001C 302C 00068 MOVLW D'300' 00000033 00025 C2 001D 00A2 00071 LOOPI MOVLW D'300' 00000035 00027 A2 001E 307C 00071 LOOPI MOVLW D'124' 00000036 00029 ENDC 0021 0BA3 00074 DECFSZ TIME1, 0000004 00030 RS EQU H'05' 0022 2820 00075 GOTO LOOP2 0000004 00032 RW EQU H'04' 0024 281E 00077 GOTO LOOP1 0002 00035 GOTO MAINLINE 0026 00079 T4SUS ;*** 48us Delay Loop for LCD initial 0010 00034 ORG 0X004 0026 00079 T4SUS ;*** 48us Delay L				00115	2000		dele septimet
00000031 00023 B1 001C 00068 MSCULVTER ;*** 150ms counter before LCD initia 00000032 00024 C1 001C 302C 00069 MOVLW D'300' 00000034 00026 B2 001D 00A2 00070 MOVWF TIME1 00000036 00028 RANGE 001E 307C 00071 LOOP1 MOVUW D'124' 00000036 00028 RANGE 001E 307C 00072 NOVWF TIME2,F 00000036 00028 RANGE 0020 0000 00073 LOOP2 NOP 0000005 00031 E EQU H'05' 0022 2820 00076 DECFSZ TIME1,F 0000000 00033 RC0 EQU H'04' 0022 281E 00077 GOTO LOOP1 0000000 00033 RC0 EQU H'04' 0026 00077 GOTO LOOP1 0000 00034 ORO 8X000 000	00000030						
00000033 00025 C2 001D 00A2 00070 MOVWF TIME1 00000034 00026 B2 001E 00A2 00071 MOVWF TIME1 00000034 00026 B2 001E 00A3 00072 MOVWF TIME1 0000036 00028 RANGE 001E 00A3 00072 MOVWF TIME2 0000005 00038 RS EQU H'02' 0022 2820 00075 GOTO LOOP2 DECFSZ TIME2,F 0000005 00031 E EQU H'02' 0022 2820 00076 DECFSZ TIME1,F 0000004 00033 RC0 EQU H'04' 0025 0008 00078 RETURN 0000000 00033 RC0 EQU H'00' 0026 00079 T48US ;*** 48us Delay Loop for LCD initiali 000 00036 ORC X0004 0027 00AD 00081 MOVUW U400' 004	00000031			001C			MSCOUNTER ;*** 150ms counter before LCD initializai
00000034 00026 B2 001E 307C 00071 LOOP1 MOVLW D'124' 00000035 00027 A2 001F 00A3 00072 MOVWF TIME2. 00000036 00029 RANGE 0020 0000 00073 LOOP2 NOP 0000005 00031 E EQU H'05' 0022 2820 00076 DECFSZ TIME2.F 0000004 00032 RW EQU H'05' 0023 0BA2 00076 DECFSZ TIME1.F 0000000 00033 RC0 EQU H'00' 0024 281E 00077 GOTO LOOP1 0000000 00033 RC0 EQU H'00' 0026 00078 RETURN 0000000 00034 OGR 0X000 0026 00079 T4SUS :*** 48us Delay Loop for LCD initiali 004 00036 ORG 0X004 0027 0AD 00081 MOVWF COUNTO 004 00036	00000032						
00000035 00027 A2 001F 00A3 00072 MOVWF TIME2 0000036 00028 RANGE 0020 0000 00073 LOOP2 NOP 0000002 00039 ENDC 0022 2820 00075 GOTO LOOP2 0000005 00031 E EQU H'02' 0023 0BA2 00076 DECFSZ TIME1,F 0000000 00033 RC EQU H'04' 0025 0008 00077 GOTO LOOP1 000000 00033 RC EQU H'04' 0025 0008 00077 GOTO LOOP1 000000 00033 RC EQU H'04' 0025 0008 00078 RETURN 0000 00034 ORG 0X004 0026 00070 T48US ;*** 48us Delay Loop for LCD initiali 004 00036 ORG 0X004 0027 00AD 00081 MOVLW D'40' 042 00037 GOTO IN			C2				
00000036 00028 RANGE 00029 ENDC 0020 0000 00073 LOOP2 NOP 0000005 00039 ENDC 0021 0BA3 00074 DECFSZ TIME2,F 0000005 00031 E EQU H'02' 0022 2820 00076 DECFSZ TIME2,F 0000004 00033 RC EQU H'04' 0022 0026 00078 RETURN 0000 00033 RC0 EQU H'04' 0026 00078 RETURN 0000 00034 ORG 0X000 0026 00079 T48US ;*** 48us Delay Loop for LCD initiali 004 00036 ORG 0X004 0027 00AD 00081 MOVLW 0'40' 004 00036 ORG 0X004 0028 00027 00AD 0081 MOVWF COUNTO 004 00037 GOTO INT 0028 00082 T_LOOP 0028 00083 CALL T12US							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
0000002 00030 RS EQU H'02' 0022 2820 00075 GOTO LOOP2' 0000005 00031 E EQU H'05' 0023 0BA2 00076 DECFSZ TIMELLF 0000000 00033 RC0 EQU H'04' 0025 0008 00078 RETURN 000 00034 ORG 0X000 0026 00079 T48US ;*** 48us Delay Loop for LCD initiali 004 00036 ORG 0X004 0027 0AAD 00081 MOVLW D'400' 004 29CA 00037 GOTO INT 0028 0028 0282 T12US	00000036	00028					
00000005 00031 E E E QU H'05' 00000004 00032 RW EQU H'04' 0024 281E 00076 DECFSZ TIME1,F 0000000 00033 RO EQU H'04' 0024 281E 00077 GOTO LOOPI 000 00034 ORG 0X000 0025 0008 00078 RETURN 000 00036 GOTO MAINLINE 0026 00079 T48US ;*** 48us Delay Loop for LCD initiali 004 00036 ORG 0X004 0027 00AD 00081 MOVLW D'400' 004 00037 GOTO INT 0028 00082 TLOOP 004 00037 GOTO INT 0028 00082 TLOOP 005 00038 MAINLINE 0028 2062 00083 CALL T12US	00000002	00020					
00000004 00032 RW EQU H'04' 0024 281E 00077 GOTO LOOPI 0000000 00033 RC0 EQU H'00' 0025 0008 00078 RETURN 000 00034 ORG 0X000 0026 00079 T4SUS ;*** 4Sus Delay Loop for LCD initiali 004 00036 ORT 0X004 0026 00080 MOVLW D'40' 004 00036 ORT 0X004 0027 00AD 0081 MOVWF COUNTO 004 29CA 00037 GOTO INT 0028 00082 T_LOOP 005 00038 MAINLINE 0028 2062 00083 CALL T12US			E EQU H'05'				
000000 00033 RC0 EQU H'100' 0025 0008 00078 RETURN 000 00034 ORG 0X000 0026 00079 T48US ;*** 48us Delay Loop for LCD initiali 000 2805 00035 GOTO MAINLINE 0026 3090 00080 MOVLW D'400' 004 00036 ORG 0X004 0027 00AD 0081 MOVWF COUNTO 004 29CA 00037 GOTO INT 0028 00082 T_LOOP 005 00038 MAINLINE 0028 2062 00083 CALL T12US			RW EQU H'04'	0024			
000 00034 ORG 0X00 0026 00079 T4SUS :*** 4Sus Delay Loop for LCD initiali 000 2805 00036 GOTO MAINLINE 0026 3009 00080 MOVLW D'400' 004 00036 ORG 0X004 0027 00AD 00081 MOVEW D'400' 004 29CA 00037 GOTO INT 0028 00082 T_LOOP 005 00038 MAINLINE 0028 2062 CALL T12US	0000000		RC0 EQU H'00'				
000 2805 00035 GOTO MAINLINE 0026 3090 00080 MOVLW D'400' 004 00036 ORG 0X004 0027 00AD 00081 MOVWF COUNTO 004 29CA 00037 GOTO INT 0028 00082 T LOOP 005 00038 MAINLINE 0028 2062 00083 CALL T12US	000	00034	ORG 0X000	0026		00079	T48US ;*** 48us Delay Loop for LCD initialization
004 29CA 00037 GOTO INT 0028 00082 T_LOOP 005 00038 MAINLINE 0028 2062 00083 CALL T12US							MOVLW D'400'
005 00038 MAINLINE 0028 2062 00083 CALL T12US	0004				00AD		
					0000		
105 1053 00039 D5r 51A1 U5,RF0 0029 0BAD 00084 DECFSZ COUNT0,F	0005						
	0000 1683	00039	Dor SIAIUS,KPU	0029	UBAD	00084	DECEST COUNTU,F

002A 002B	2828 0008	00085 00086 00087 00088	GOTO T_LOOP RETURN	007F 0080 0081 0082	3064 02A6 1803 287E	00193 00194 00195 00196	MOVLW D'100' SUBWF CONFU,F BTFSC STATUS,0 GOTO HUNDREDS	
002C 002C 002D 002E	$1105 \\ 1205 \\ 3006 \\ 0007$	00089 00090 00091 00092 00093	CHARACTER ENTRY ;*** Character Entry Command for LCD BCF PORTA,RS BCF PORTA,RW MOVUW H'06' MOVUW BODTC	0083 0084 0085 0086 0087	3001 022B 00A7 3064 07A6	00197 00198 00199 00200 00201	MOVLW D'1' SUBWF COUNT1,W MOVWF A MOVLW D'100' ADDWF CONFU,F ;th	e difference obtained should be added with
$\begin{array}{c} 002F\\ 0030\\ 0031\\ 0032\\ 0033\\ 0033\\ 0034\\ 0035\\ 0036\\ 0037\\ 0038\\ 0039 \end{array}$	$\begin{array}{c} 0087\\ 2055\\ 2026\\ 0008\\ 1105\\ 1205\\ 3001\\ 0087\\ 2055\\ 2026\\ 0008\\ \end{array}$	00094 00095 00096 00097 00098 00099 00100 00101 00102 00103 00104 00105 00106	MOVWF PORTC CALL PULSE E CALL T48US RETURN CLEAR DISPLAY BCF PORTA,RW MOVLW H'1' MOVWF PORTC CALL PULSE E CALL T48US RETURN	0088 0089 0089 008A 008B 008C 008D 008E 008F 0090 0091 0092	00202 0008 0FAC 300A 02A6 1803 2889 300A 0726 00A9 3001 022C	00203 00204 00205 00206 00207 00208 00209 00210 00211 00212 00213 00214	RETURN TENS INCFSZ COUNT,F MOVLW D'10' SUBWF CONFU,F BTFSC STATUS,0 GOTO TENS MOVLW D'10' ADDWF CONFU,W MOVWF C3 ;one MOVLW D'1' SUBWF COUNT,W	extract the tens place ;2 count tens subtract from 10 es place-difference+10 gives ones place
003A 003A 003B 003C 003D	1105 1205 3038 0087	00107 00108 00109 00110 00111 00112 00113	FUNCTIONSET ;*** Function Set Command for LCD BCP PORTA.RS BCP PORTA.RW MOVLW H38' MOVWP PORTC	0093 0094	00A8 0008	00215 00216 00217 00218 00219	MOVWF B3 RETURN	;tens place-count gives tens place ;temp in kevin =500 -(255-ADRES)*2 ;******subtraction from 500 is done by digitwise subtraction ;various cases are to be considered inorder to initiate subtraction
003E 003F 0040 0041 0042 0043 0044 0045 0046 0047 0048	2055 2026 0008 1105 1205 300C 0087 2055 2026 0008	00114 00115 00116 00117 00118 00119 00120 00121 00122 00123 00124 00125	CALL PULSE E CALL 748US RETURN DISPLAYON ;*** Display On/Off & Cursor Command for LCD BCF PORTA,RS BCF PORTA,RW MOVLW D12' MOVWF PORTC CALL PULSE E CALL 148US RETURN DISPLAY	0095 0095 0096 0097 0098 0099 009A 009B 009C 009D 009E 009F	300A 00B2 3009 00B1 3004 00B0 3000 0629 1903 28AD 0829	00220 00221 00222 00223 00224 00225 00226 00227 00228 00229 00230	SUBTRACT MOVLW D'10' MOVUF C1 MOVUF C1 MOVUF B1 MOVUF B1 MOVUF A1 MOVUF A1 MOVUF A1 MOVUF C3,W BTFSC STATUS,Z GOTO UNIT MOVF C3,W	;if ones place is 0,B1 should be made 10
0048 0049 004A 004A 004B	3008 00AE 082E 3C08	00126 00127 00128 00129 00130 00131	MOVLW D'8' MOVWF COUNTER MESSAGE MOVF COUNTER,W SUBLW D'8' ;Subtract character count from 19 ;& store result in W	00A0 00A1 00A2 00A3 00A4 00A5	0232 00B3 3000 0628 1903 28C0	00231 00232 00233 00234 00235 00236 00237	SUBWF C1,W MOVWF C2 MOVLW D'0' XORWF B3,W BTFSC STATUS,Z GOTO TEN	;if tens place is 0
004C 004D 004E 004F 0050 0051 0052	2059 1505 1205 0087 2055 2026 0BAE	00132 00133 00134 00135 00136 00137 00138	CALL TEXT BSF PORTA,RS ;RS line to 1 to i/p Data BCF PORTA,RW ;R/W line to 0 to write MOVWF PORTC ;send character to LCD CALL PULSE E ;Clock the LCD CALL T48US ;delay for LCD busy DECFSZ COUNTER,F ;counter - 1 = 0 ?	00A6 00A7 00A8 00A9 00AA 00AB 00AC	0828 0231 00B4 0827 0230 00B5 28C7	00238 00239 00240 00241 00242 00243 00244	MOVF B3,W SUBWF B1,W MOVWF B2 MOVF A,W SUBWF A1,W MOVWF A2 GOTO DISPLAY1	
$\begin{array}{c} 0053 \\ 0054 \\ 0055 \end{array}$	284A 0008	00139 00140 00141 00142	GOTO MESSAGE RETURN PULSE_E ;*** Display the next character ;Yes. Goto Initialize pulse_E ;*** Display On/Off & Cursor Command for LCD	00AD 00AD 00AE	01B3 3000	00245 U 00246 00247	UNIT CLRF C2 MOVLW D'0'	;*when units place is zero and tens place is nonzero
0055 0056 0057 0058 0059 0059	1685 0000 1285 3400 0782	$\begin{array}{c} 00143\\ 00144\\ 00145\\ 00146\\ 00147\\ 00148\\ \end{array}$	BSF PORTA,E NOP BCF PORTA,E RETLW H'0' TEXT ADDWF 02,F ;Store (PC+W) in PC(addr \$02) to jump	00AF 00B0 00B1 00B2 00B3 00B4	0628 1903 28BA 0AB1 0828 0231	00248 00249 00250 00251 00252 00253	XORWF B3,W BTFSC STATUS,Z GOTO UNITY INCF B1,F MOVF B3,W SUBWF B1,W	;in case tens place is 0,A1 should be made 5
$\begin{array}{c} 005 {\rm A} \\ 005 {\rm B} \\ 005 {\rm C} \\ 005 {\rm D} \\ 005 {\rm E} \\ 005 {\rm F} \end{array}$	3454 3465 346D 3470 34A5 34FE	00149 00150 00151 00152 00153 00154	forward RETLW H'54' ;ascii for t RETLW H'65' ;ASCII for e RETLW H'66' ;ASCII for m RETLW H'70' ;ASCII for p RETLW H'70' ;ASCII for p RETLW H'64' ;ASCII for blank	00B5 00B6 00B7 00B8 00B9 00BA	00B4 0827 0230 00B5 28C7	$\begin{array}{c} 00254 \\ 00255 \\ 00256 \\ 00257 \\ 00258 \\ 00259 \end{array}$	MOVWF B2 MOVF A,W SUBWF A1,W MOVWF A2 GOTO DISPLAY1 UNITY	;*when units place and tens place are both zeroes
0060 0061 0062 0062	343A 34FE 2863	00155 00156 00157 00158 00159	RETLW H'3a' ;ASCII for : RETLW H'fe' 2;ASCII for blank T12US .*** 12 microseconds timer ***	00BA 00BB 00BC 00BD 00BE	01B4 0AB0 0827 0230 00B5	$\begin{array}{c} 00260\\ 00261\\ 00262\\ 00263\\ 00264\\ 00264\\ \end{array}$	CLRF B2 INCF A1,F MOVF A,W SUBWF A1,W MOVWF A2	;make A1=5
0063 0064 0065 0066 0067 0068	2864 2865 2866 0000 0008	00160 00161 00162 00163 00164 00165	GOTO \$+1 GOTO \$+1 GOTO \$+1 GOTO \$+1 GOTO \$+1 NOP RETURN PRESENT	00BF 00C0 00C0 00C1 00C2	28C7 0828 0231 00B4	00265 00266 00267 00268 00269	GOTO DISPLAY1 TEN MOVF B3,W SUBWF B1,W MOVWF B2	;*when tens place is zero and units place is nonzero
0068 0069 006A 006B 006C 006D	3049 009F 201C 151F 0008	00166 00167 00168 00169 00170 00171	MOVLW B'01001001' set clk 2 fosc/8,ADON,i/p channel ra1 MOVWF ADCON0 CALL MSCOUNTER BSF ADCON0,2 ;set GO bit to start ADC RETURN CHECK	00C3 00C4 00C5 00C6 00C7 00C7	0827 0230 00B5 28C7 1505	00270 00271 00272 00273 00274 00275	MOVF A,W SUBWF A1,W MOVWF A2 GOTO DISPLAY1 DISPLAY1 BSF PORTA,RS	;*to display the nos. on LCD ;RS line to 1 to i/p Data
006D 006E 006F 0070 0071	191F 286D 081E 00A0 3CFF	00172 00174 00175 00176 00177	BTFSC ADCON0,2 ;when conversion is complete ADCON0 will 00173 ;be cleared and control will come out of loop GOTO CHECK MOVF ADRES,W ;the ADC value is found in ADRES SUBLW D'255' ;255-ADRES	00C8 00C9 00CA 00CB 00CC 00CD	$\begin{array}{c} 1205 \\ 3030 \\ 07B5 \\ 0835 \\ 0087 \\ 2055 \end{array}$	00276 00277 00278 00279 00280 00281	BCF PORTA,RW MOVLW D'48' ADDWF A2,F MOVF A2,W MOVWF PORTC CALL PULSE_E	;R/W line to 0 to write ;send character to LCD ;Clock the LCD
0072 0073 0074 0075 0076 0077	00A5 1003 0D25 00A6 3064 0226	00178 00179 00180 00181 00182 00183	MOVWF FIN BCF STATUS,0 RLF FIN,W ;(255-ADRES)*2 MOVWF CONFU MOVLW D'100' ;2 extract hundreds value SUBWF CONFU,W	00CE 00CF 00D0 00D1 00D2 00D3	2026 1505 1205 3030 07B4 0834	00282 00283 00284 00285 00286 00286 00287	CALL T48US BSF PORTA,RS BCF PORTA,RW MOVLW D'48' ADDWF B2,F MOVE B2,F	delay for LCD busy RS line to 1 to i/p Data R/W line to 0 to write
0078 0079 007A	01A7 01A8 01A9	00184 00185 00186	CLRF A CLRF B3 CLRF C3	00D4 00D5 00D6	$\begin{array}{c} 0087 \\ 2055 \\ 2026 \end{array}$	00288 00289 00290	MOVF B2,W MOVWF PORTC CALL PULSE E CALL T48US BSF PORTA,RS BCF PORTA,RW MOVU W D'48'	;send character to LCD ;Clock the LCD
007B 007C 007D 007E	01AC 01AB 0008	00187 00188 00189 00190	CLRF COUNT CLRF COUNT1 RETURN HUNDREDS INCFSZ COUNT1,F ;2 count hundreds subtract from 100 until	00D7 00D8 00D9 00DA	1505 1205 3030 07B3	00291 00292 00293 00294	ADDWF C2.F	;RS line to 1 to i/p Data ;R/W line to 0 to write
007E	0FAB	00191 00192	INCFSZ COUNT1,F ;2 count hundreds subtract from 100 until ;*** 12 microseconds timer ***borrow is generated.	00DB 00DC	0833 0087	00295 00296	MOVF C2,Ŵ MOVWF PORTC	;send character to LCD

00DD	2055	00297	CALL PULSE_E	;Clock the LCD	0142	00B5	00405	MOVWF A2
00 DE 00 DF	$2026 \\ 1505$	$00298 \\ 00299$	CALL T48US BSF PORTA,RS	;RS line to 1 to i/p Data	0143 0144	294B	$00406 \\ 00407$	GOTO DISPLAY2 TEN1
00E0 00E1	1205 30DF	$\begin{array}{c} 00300 \\ 00301 \end{array}$	BCF PORTA,RW MOVLW B'11011111'	;R/W line to 0 to write ;to print symbol for degree	0144	0828	00408	MOVF B3,W
00E2 00E3	$0087 \\ 2055$	$00302 \\ 00303$	MOVWF PORTC CALL PULSE E	;send character to LCD ;Clock the LCD	0145 0146	0231 00B4	$00409 \\ 00410$	SUBWF B1,W MOVWF B2
00E4 00E5	2026 1505	00304 00305	CALL T48US BSF PORTA,RS	;RS line to 1 to i/p Data	0147 0148	0827 0230	00411 00412	MOVF A,W SUBWF A1,W
00E6	1205	00306	BCF PORTA,RW	;R/W line to 0 to write	0149	00B5	00413	MOVWF A2
00E7 00E8	304B 0087	$00307 \\ 00308$	MOVLW 'K' MOVWF PORTC	;send character to LCD	014A 014B	294B	$00414 \\ 00415$	GOTO DISPLAY2 DISPLAY2
00E9 00EA	$2055 \\ 2026$	$00309 \\ 00310$	CALL PULSE_E CALL T48US	;Clock the LCD	014B 014C	$\frac{1105}{1205}$	$00416 \\ 00417$	BCF PORTA,RS BCF PORTA,RW
		00311		;*to give the set-point value follow the same procedure as above user_defined	014D 014E	30A8 0087	$00418 \\ 00419$	MOVLW H'a8' MOVWF PORTC
00EB 00EC	3059 009F	$\begin{array}{c} 00312 \\ 00313 \end{array}$	MOVLW B'01011001' MOVWF ADCON0	;set clk 2 fosc/8,ADON,i/p channel ra3	014F 0150	2055 2026	00420 00421	CALL PULSE_E CALL T48US
00ED	201C	00314	CALL MSCOUNTER		0151	1505	00422	BSF PORTA,RS
00 EE 00 EF	151F	$00315 \\ 00316$	BSF ADCON0,2 CHECK1		0152 0153	$\frac{1205}{3053}$	$00423 \\ 00424$	BCF PORTA,RW MOVLW 'S'
00EF 00F0	191F 28EF	$\begin{array}{c} 00317 \\ 00318 \end{array}$	BTFSC ADCON0,2 GOTO CHECK1		0154 0155	$ \begin{array}{c} 0087 \\ 2055 \end{array} $	$00425 \\ 00426$	MOVWF PORTC CALL PULSE E
00F1 00F2	081E 00A1	$00319 \\ 00320$	MOVF ADRES,W MOVWF ADUSER		0156 0157	$2026 \\ 1505$	$00427 \\ 00428$	CALL T48US BSF PORTA,RS
00F3 00F4	3CFF 00A5	00321 00322	SUBLW D'255' MOVWF FIN		0158 0159	$1205 \\ 3065$	00429 00430	BCF PORTA,RW MOVLW 'e'
00F5	1003	00323	BCF STATUS,0		015A	0087	00431	MOVWF PORTC
00F6 00F7	0D25 00A6	$\begin{array}{c} 00324 \\ 00325 \end{array}$	RLF FIN,W MOVWF CONFU		015B 015C	$2055 \\ 2026$	$00432 \\ 00433$	CALL PULSE_E CALL T48US
00F8 00F9	$3064 \\ 0226$	$00326 \\ 00327$	MOVLW D'100' SUBWF CONFU,W	;2 extract hundreds value	015D 015E	$1505 \\ 1205$	$00434 \\ 00435$	BSF PORTA,RS BCF PORTA,RW
00FA 00FB	01A7 01A8	$00328 \\ 00329$	CLRF A CLRF B3		015F 0160	$3074 \\ 0087$	$00436 \\ 00437$	MOVLW 't' MOVWF PORTC
00FC	01A9	00330	CLRF C3 CLRF COUNT		0161	2055	00438 00439	CALL PULSE_E CALL T48US
00FD 00FE	01AC 01AB	00331 00332	CLRF COUNT1		0162 0163	$2026 \\ 1505$	00440	BSF PORTA,RS
00FF 0100	$1803 \\ 2103$	$\begin{array}{c} 00333 \\ 00334 \end{array}$	BTFSC STATUS,0 CALL HUNDREDS1		0164 0165	1205 30FE	$\begin{array}{c} 00441 \\ 00442 \end{array}$	BCF PORTA,RW MOVLW H'FE'
0101 0102	210E 2919	$\begin{array}{c} 00335 \\ 00336 \end{array}$	CALL TENS1 GOTO SUBTRACT1		0166 0167	$ \begin{array}{c} 0087 \\ 2055 \end{array} $	$00443 \\ 00444$	MOVWF PORTC CALL PULSE_E
0103 0103	0FAB	00337 00338	HUNDREDS1 INCFSZ COUNT1,F	;2 count hundreds	0168 0169	2026 1505	$00445 \\ 00446$	CALL T48US BSF PORTA,RS
0104	3064	00339	MOVLW D'100'	,2 courre numercus	016A	1205	00447	BCF PORTA,RW
$0105 \\ 0106$	02A6 1803	$ \begin{array}{c} 00340 \\ 00341 \end{array} $	SUBWF CONFU,F BTFSC STATUS,0		016B 016C	$3050 \\ 0087$	$00448 \\ 00449$	MOVLW 'P' MOVWF PORTC
0107 0108	$2903 \\ 3001$	$\begin{array}{c} 00342 \\ 00343 \end{array}$	GOTO HUNDREDS1 MOVLW D'1'		016D 016E	$2055 \\ 2026$	$00450 \\ 00451$	CALL PULSE_E CALL T48US
0109 010A	022B 00A7	$\begin{array}{c} 00344 \\ 00345 \end{array}$	SUBWF COUNT1,W MOVWF A		016F 0170	$1505 \\ 1205$	$00452 \\ 00453$	BSF PORTA,RS BCF PORTA,RW
010B 010C	3064 07A6	$\begin{array}{c} 00346 \\ 00347 \end{array}$	MOVLW D'100' ADDWF CONFU,F		0171 0172	306F 0087	$00454 \\ 00455$	MOVLW 'o' MOVWF PORTC
010D	0008	00348	RETURN		0173	2055	00456	CALL PULSE_E
010E 010E	0FAC	00349 00350	TENS1 INCFSZ COUNT,F	;2 count tens	0174 0175	$2026 \\ 1505$	$00457 \\ 00458$	CALL T48US BSF PORTA,RS
010F 0110	300A 02A6	$\begin{array}{c} 00351 \\ 00352 \end{array}$	MOVLW D'10' SUBWF CONFU,F		0176 0177	$1205 \\ 3069$	$00459 \\ 00460$	BCF PORTA,RW MOVLW 'i'
$0111 \\ 0112$	1803 290E	$\begin{array}{c} 00353 \\ 00354 \end{array}$	BTFSC STATUS,0 GOTO TENS1		0178 0179	$ \begin{array}{c} 0087 \\ 2055 \end{array} $	$00461 \\ 00462$	MOVWF PORTC CALL PULSE_E
$0113 \\ 0114$	300A 0726	$\begin{array}{c} 00355 \\ 00356 \end{array}$	MOVLW D'10' ADDWF CONFU,W		017A 017B	$2026 \\ 1505$	$\begin{array}{c} 00463 \\ 00464 \end{array}$	CALL T48US BSF PORTA,RS
0115 0116	00A9 3001	$00357 \\ 00358$	MOVWF C3 MOVLW D'1'	;ones place	017C 017D	1205	00465 00466	BCF PORTA,RW MOVLW 'n'
0117	022C	00359	SUBWF COUNT,W		017E	306E 0087	00467	MOVWF PORTC
0118 0119	00A8	$00360 \\ 00361$	MOVWF B3 SUBTRACT1		017F 0180	$2055 \\ 2026$	$00468 \\ 00469$	CALL PULSE_E CALL T48US
0119 011A	300A 00B2	$00362 \\ 00363$	MOVLW D'10' MOVWF C1		0181 0182	$1505 \\ 1205$	$\begin{array}{c} 00470 \\ 00471 \end{array}$	BSF PORTA,RS BCF PORTA,RW
011B 011C	3009 00B1	$00364 \\ 00365$	MOVLW D'9' MOVWF B1		0183 0184	$3074 \\ 0087$	$\begin{array}{c} 00472 \\ 00473 \end{array}$	MOVLW 't' MOVWF PORTC
011D 011E	3004 00B0	00366 00367	MOVLW D'4' MOVWF A1		0185 0186	$2055 \\ 2026$	$00474 \\ 00475$	CALL PULSE_E CALL T48US
011F	3000 0629	00368	MOVLW D'0'		0187	1505	00476	BSF PORTA,RS
0120 0121	1903	00369 00370	XORWF C3,W BTFSC STATUS,Z		0188 0189	1205 303A	00477 00478	BCF PORTA,RW MOVLW ':'
$0122 \\ 0123$	$2931 \\ 0829$	$\begin{array}{c} 00371 \\ 00372 \end{array}$	MOVF C3,W	case tens place is 0,B1 should be made 10	018A 018B	$ \begin{array}{c} 0087 \\ 2055 \end{array} $	$00479 \\ 00480$	MOVWF PORTC CALL PULSE_E
$0124 \\ 0125$	0232 00B3	$\begin{array}{c} 00373 \\ 00374 \end{array}$	SUBWF C1,W MOVWF C2		018C 018D	$2026 \\ 1505$	$00481 \\ 00482$	CALL T48US BSF PORTA,RS
0126 0127	$3000 \\ 0628$	$\begin{array}{c} 00375 \\ 00376 \end{array}$	MOVLW D'0' XORWF B3,W		018E 018F	1205 30FE	$\begin{array}{c} 00483 \\ 00484 \end{array}$	BCF PORTA,RW MOVLW H'fe'
0128 0129	$1903 \\ 2944$	$00377 \\ 00378$	BTFSC STÁTUS,Z	case tens place is 0 ,A1 should be made 5	0190 0191	$ \begin{array}{c} 0087 \\ 2055 \end{array} $	$00485 \\ 00486$	MOVWF PORTC CALL PULSE_E
012A	0828	00379	MOVF B3,W	cuse tens place is o art should be made o	0192	2026	00487	CALL T48US
012B 012C	0231 00B4	$ \begin{array}{c} 00380 \\ 00381 \end{array} $	SUBWF B1,W MOVWF B2		0193 0194	$1505 \\ 1205$	00488 00489	BSF PORTA,RS BCF PORTA,RW
012D 012E	$0827 \\ 0230$	$\begin{array}{c} 00382 \\ 00383 \end{array}$	MOVF A,W SUBWF A1,W		0195 0196	$3030 \\ 07B5$	$\begin{array}{c} 00490 \\ 00491 \end{array}$	MOVLW D'48' ADDWF A2,F
012F 0130	00B5 294B	$\begin{array}{c} 00384 \\ 00385 \end{array}$	MOVWF A2 GOTO DISPLAY2		0197 0198	$ \begin{array}{c} 0835 \\ 0087 \end{array} $	$00492 \\ 00493$	MOVF A2,W MOVWF PORTC
$\begin{array}{c} 0131 \\ 0131 \end{array}$	01B3	$\begin{array}{c} 00386 \\ 00387 \end{array}$	UNIT1 CLRF C2	;*when units place is zero	0199 019A	$2055 \\ 2026$	$00494 \\ 00495$	CALL PULSE_E CALL T48US
0132 0133	3000 0628	00388 00389	MOVLW D'0' XORWF B3,W		019B 019C	1505	00496	BSF PORTA,RS BCF PORTA,RW
0134	1903	00390	BTFSC STATUS,Z		019D	1205 3030	00497 00498	MOVLW D'48'
0135 0136	293E 0AB1	00391 00392	GOTO UNITY1 INCF B1,F		019E 019F	07B4 0834	$00499 \\ 00500$	ADDWF B2,F MOVF B2,W
$0137 \\ 0138$	$0828 \\ 0231$	$00393 \\ 00394$	MOVF B3,W SUBWF B1,W		01A0 01A1	$ \begin{array}{c} 0087 \\ 2055 \end{array} $	$\begin{array}{c} 00501 \\ 00502 \end{array}$	MOVWF PORTC CALL PULSE_E
0139 013A	00B4 0827	00395 00396	MOVWF B2 MOVF A,W		01A2 01A3	$2026 \\ 1505$	$\begin{array}{c} 00503 \\ 00504 \end{array}$	CALL T48US BSF PORTA,RS
013B 013C	0230 00B5	00397 00398	SUBWF A1,W MOVWF A2		01A4 01A5	1205 3030	00505 00506	BCF PORTA,RW MOVLW D'48'
013D	294B	00399	GOTO DISPLAY2	units place and tong place are both sor	01A6	07B3	00507	ADDWF C2,F
013E 013E	01B4	00400 00401	CLRF B2	units place and tens place are both zeroes	01A7 01A8	0833 0087	00508 00509	MOVF C2,W MOVWF PORTC
013F 0140	0AB0 0827	00402 00403	INCF A1,F MOVF A,W		01A9 01AA	$2055 \\ 2026$	$00510 \\ 00511$	CALL PULSE_E CALL T48US
0141	0230	00404	SUBWF A1,W		01AB	1505	00512	BSF PORTA,RS

;*when tens place is zero and units place is nonzero

;TO GOTO SECOND LINE ;RS line to 1 to i/p Data ;R/W line to 0 to write ;send character to LCD ;Clock the LCD ;RS line to 1 to i/p Data ;R/W line to 0 to write ;send character to LCD ;Clock the LCD ;RS line to 1 to i/p Data ;R/W line to 0 to write ;send character to LCD ;Clock the LCD ;RS line to 1 to i/p Data ;R/W line to 0 to write ;send character to LCD ;Clock the LCD ;RS line to 1 to i/p Data ;R/W line to 0 to write ;send character to LCD ;Clock the LCD ;RS line to 1 to i/p Data ;R/W line to 0 to write ;send character to LCD ;Clock the LCD ;RS line to 1 to i/p Data ;R/W line to 0 to write ;send character to LCD ;Clock the LCD ;RS line to 1 to i/p Data ;R/W line to 0 to write ;send character to LCD ;Clock the LCD ;RS line to 1 to i/p Data ;R/W line to 0 to write ;send character to LCD ;Clock the LCD ;RS line to 1 to i/p Data ;R/W line to 0 to write ;send character to LCD ;Clock the LCD ;RS line to 1 to i/p Data ;R/W line to 0 to write ;send character to LCD ;Clock the LCD ;RS line to 1 to i/p Data ;R/W line to 0 to write

;send character to LCD ;Clock the LCD ;delay for LCD busy ;RS line to 1 to i/p Data ;R/W line to 0 to write

;send character to LCD ;Clock the LCD

;RS line to 1 to i/p Data ;R/W line to 0 to write

;send character to LCD ;Clock the LCD

; RS $\,$ line to 1 to i/p Data $\,$

01AC 01AD 01AE	1205 30DF 0087	$\begin{array}{c} 00513 \\ 00514 \\ 00515 \end{array}$	BCF PORTA,RW MOVLW B'11011111' MOVWF PORTC	;R/W line to 0 to write ;to print symbol for degree ;send character to LCD	01BF 01C0 01C1	1486 29C3	$\begin{array}{c} 00535 \\ 00536 \\ 00537 \end{array}$	BSF PORTB,1 GOTO CURSOR1 CLEAR	;To give the ON signal
01AF	2055	00516	CALL PULSE_E	Clock the LCD	01C1	1086	00538	BCF PORTB,1	
01B0	2026	00517	CALL T48US		01C2	29C3	00539	GOTO CURSOR1	
01B1	1505	00518	BSF PORTA,RS	;RS line to 1 to i/p Data	01C3		00540		r home command to LCD
01B2	1205	00519	BCF PORTA,RW	;R/W line to 0 to write				00541	
01B3	304B	00520	MOVLW 'K'		01C3	1105	00542	BCF PORTA,RS	
01B4	0087	00521	MOVWF PORTC	;send character to LCD	01C4	1205	00543	BCF PORTA,RW	
01B5	2055	00522	CALL PULSE_E	;Clock the LCD	01C5	3003	00544	MOVLW H'03'	
01B6	2026	00523	CALL T48US		01C6	0087	00545	MOVWF PORTC	
		00524		;****to generate the ON/OFF signal	01C7	2055	00546	CALL PULSE_E	
				subtract ADUSER from AD1	01C8	2026	00547	CALL T48US	
01B7		00525	CONTROL	***	01C9	2815	00548	GOTO BEGIN	
01B7	0820	00526	MOVF AD1,		01CA		00549	INT	
01B8	0221	00527	SUBWF AD		01CA	2805	00550	GOTO MAINLINE	
01B9	1803	00528	BTFSC STA					00551 END	
01BA	29BD	00529	GOTO CON					Jsed: 456	
01BB	1086	00530	BCF PORTE				y Words F	'ree: 3640	
01BC	29C3	00531	GOTO CURS	SORI	Errors				
01BD	1000	00532	CONTROL1		Warnii		reported,	2 suppressed	
01BD	1903	00533	BTFSC STATUS,Z		Messag	es: 0r	reported,	4 suppressed	
01BE	29C1	00534	GOTO CLEAR	;To give the OFF signal	1				

Readers' comments

I have the following queries:

1. In line No. 00117 of the program code (temp.lst), the result of analogueto-digital conversion (ADC) has been subtracted from '255.' In the explanation, it is mentioned that '255' stands for '5V,' so what's the purpose behind doing so?

2. Again, the result of the above subtraction is multiplied by '2' in line No. 00180. Why?

3. At the start of the 'Subtract' subroutine (line No. 00220), the comment states that "temp in Kelvin 500-(255-ADRES)*2." In this equation, what is the reason behind using '500' and not any other number? What is the significance of the given formula?

4. In the same subroutine, i.e., 'Subtract,' the author has used Nos. 10, 9, 4 and 0 (line Nos 00221, 00223, 00225 and 00227, respectively) for digit-wise subtraction. Here, why specifically only these numbers are used?

> Nirmit Dudhia Through e-mail

The authors, Sreeja Menon and Niranjana Ashok, reply:

The logic behind the formula 500–(255–ADRES)*2 follows. The ADC inside the PIC is 8-bit and hence the maximum digital value is '255' corresponding to the analogue voltage value of 5V, as given in the specification of the PIC. Thus, we arrive at the relationship that '5V' corresponds to '255' (digital value).

Again, the temperature sensor used has the sensitivity of 1 μ A/K, and the temperature sensing range is 218K to 423K.

Since the output from the temperature sensor is a current corresponding to the sensed temperature, we used a 10-kilo-ohm resistor to convert the current into voltage. Thus, the voltage sensitivity of our set-up will be 1mV(0.01V)/K resulting in the input voltage range to the ADC of the PIC as 2.18V to 4.23V.

Now, in order to arrive at the formula, we made an approximation to the linearity in the relationship between the temperature and voltage.

That is,							
255 5V	500K						
254 4.98V	498K						
$253 \ 4.96V$	496K						
and so on.							

Since the sensitivity is 0.01V/K, for each unit change in the digital value the voltage value changes by 0.01V. The formula was derived to approximate the above relationship between the digital value and the temperature value in Kelvin scale.

We want the temperature in Kelvin value to energise/de-energise the relay and also to display on the LCD panel. Hence, when the ADC shows '255' the display should show '500K,' when the ADC shows '254' the display should show '498K,' and so on. The relay should energise/de-energise accordingly.

So based on the relationship mentioned above, we arrived at a linear relationship that is an approximation for the actual non-linear relationship between the sensed temperature and the digital value.

For example, when ADRES is '248,' according to the formula, the temperature is calculated as follows:

(255-248)x2=7x2=14

Now, 500–14=486K

Thus we arrive at the temperature in Kelvin.

This explanation suffices for the first three queries of Mr Dudhia.

Regarding the fourth query, since the PIC is a RISC processor, with 35 instructions, we had to arrive at a complicated logic to do the subtraction from '500' as the maximum possible digital value was '255.' Hence, to do an operation like 500-238, we need to do digit-wise subtraction. For the units place we perform 10-8=2, for the tens place we perform 9-3=6, and for the hundreds place we perform 4-2=2, resulting in '262' as the correct answer. The algorithm is based on the fact that we need to do subtraction from '500' and hence the numbers 10, 9 and 4. Again, if the units place of the number to be subtracted is '0,' we need to subtract the tens digit from '10' and the units digit from '0' and so on.

For example, 500-240 will be done as follows:

Units digit of the result=0–0=0

Tens digit of the result=10–4=6

Hundreds digit of the result=4–2=2

We have put 'A1' as the number from which the units digit is to be subtracted, 'B1' for the tens digit and 'C1' for the hundreds digit.

If the number to be subtracted has non-zero units, tens and hundreds digits:

A1=10, B1=9, C1=4

If only the units digit is zero:

A1=0, B1=10, C1=4

If the tens digit is zero: A1=10, B1=9, C1=5

and so on for different combinations.

STEPPER MOTOR CONTROL USING 89C51 MICROCONTROLLER

MANDEEP SINGH WALIA

Here's a stepper motor controller based on 89C51 microcontroller to control the rotation of a DC stepper motor in clockwise and anti-clockwise directions. The controller is simple and easy-to-construct, and can be used in many applications including machine control and robotics for controlling the axial rotation in XY plane. A similar circuit can be added to control the rotation of the motor in either XZ or YZ plane.

Fig. 1 shows the block diagram of the stepper motor control system. The power supply section (in Fig. 2) consists of a stepdown transformer (7.5V AC, 1A), bridge rectifier (comprising diodes D1 through D4), filter capacitors (C1 and C2) and regulator IC 7805.

We have used here an Atmel make low-power, high-performance, 8-bit CMOS microcontroller AT89C51 with 4 kB of Flash programmable and erasable readonly memory (PEROM). It has a 128x8bit internal RAM, 32 programmable input/output (I/O) lines and two 16-bit timer/counters. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional non-volatile

MICROCONTROLLER

89C51

CONTROL SWITCH

Fig. 1: Block diagram of the stepper motor control system

POWER SUPPLY memory programmer.

By combining a versatile 8-bit CPU with Flash on a monolithic chip, Atmel AT89C51 is a powerful, highly flexible and cost-effective solution to many embedded control applications. From traffic control equipment to input devices, computer networking products and stepper motor controllers, 89C51 microcontrollers deliver a high performance with a choice of configurations and options matched to the specific needs of each application.

IC AT89C51 features:

1. 8-bit CPU with math registers A and B $\,$

2. 16-bit program counter (PC) and data pointer (DPTR)

3. 8-bit program status word (PSW)

4. 8-bit stack pointer (SP)

The control switches for the motor are connected to Reset and Port $P_{0.7}$ pins of the microcontroller.

Circuit description

STEPPER MOTOR

Fig. 2 shows the complete circuit of the stepper motor controller. When power supply switch S1 is closed, LED1 glows

> to indicate the presence of power in the circuit. Capacitor C3 connected to pin 9 (RST) provides the power-on reset to the microcontroller.

The stepper motor is connected to port pins P2.4 through P2.7 of the

microcontroller (IC2)

	TABLE I Power Consumption of Microcontrollers								
IC	V _{oh}	I	V _{oi}	I	V _{il}	I _{il}	V _{ih}	I _{ih}	\mathbf{P}_{t}
CMOS	2.4V	–60 μA	0.45V	1.7 mA	0.9V	10 µA	1.9V	10 µA	50 mW
NMOS	2.4V	-80 μA	0.45V	1.7 mA	0.8V	-800 mA	2.0V	10 µA	800 mW

PAR	TS LIST						
Semiconductors:							
IC1 IC2 T1, T3, T5, T7 T2, T4, T6, T8 D1-D8 LED1	 7805 5V regulator AT89C51 microcontroller BC548 npn transistors SL100 npn transistors 1N4001 rectifier diodes Red LED (5mm dia.) 						
Resistors (all ¼-watt,	±5% carbon):						
R1 R2 R3, R5, R7, R9 R4, R6, R8, R10, R11	- 100-ohm - 10-kilo-ohm - 1-kilo-ohm - 470-ohm						
Capacitors:							
C1 C2 C3 C4, C5 C6	 220μF, 25V electrolytic 100μF, 16V electrolytic 10μF, 16V electrolytic 33pF ceramic disk 100μF, 16V electrolytic 						
Miscellaneous:							
X1 S1, S3 S2	 230VAC primary to 0-7.5V, 1A secondary step-down transformer 5V DC stepper motor on/off switch push-to-on switch 						
	r that to on shroun						

through the motor-driver circuit consisting of four Darlington pairs comprising transistors BC548 and SL100 (T1-T2, T3-T4, T5-T6 and T7-T8). Coils 1 through 4 are the stepper motor coils.

When transistors conduct, 5V (Vcc) is applied to the coils and the currents flowing through them create magnetic fields and the motor starts rotating. The magnetic field energy thus created is stored in the coils.

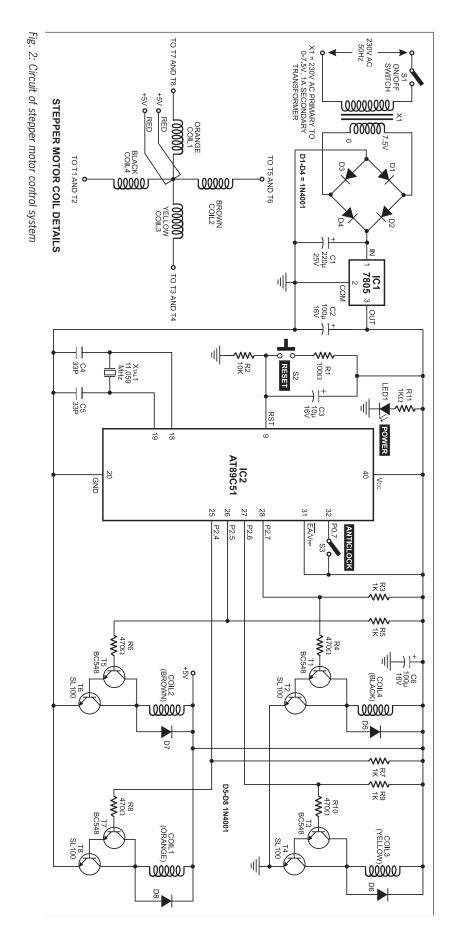
When transistors stop conducting, power to the coils is cut off, the magnetic field collapses and a reverse voltage (called inductive kickback or back emf) is generated in the coils. The back emf can be more than 100 volts. The diodes connected across the coils absorb the reverse voltage spike. This voltage, if not absorbed by the diodes, may produce opposite torque and cause improper rotation of the motor and also damage the transistors. You can use virtually any type of rectifier or switching diodes of appropriate current and reverse voltage breakdown rating.

Clock and reset circuit. Two 33pF capacitors (C4 and C5) are connected to pins 18 and 19 of the microcontroller, respectively, with an 11.059MHz piezoelectric crystal $(\boldsymbol{X}_{_{TAL1}})$ across them. The clock frequency of the microcontroller depends on the frequency of the crystal oscillator used. Typically, the maximum and minimum frequencies are 1 MHz and 16 MHz, respectively, so we should use a piezoelectric crystal with a frequency in this range. The speed of the stepper motor is proportional to the frequency of the input pulses or it is inversely proportional to the time delay between pulses, which can be achieved through software by making use of instruction execution time.

The time taken by any instruction to get executed can be computed as follows:

Time=
$$\frac{C \times 12}{F}$$

where 'C' is the number of cycles an instruction takes to execute and 'F' is the crystal frequency.


The crystal frequency in this circuit is 11.059 MHz, so the time taken to execute, say, ADD A, R1 (single-cycle instruction), is about one microsecond (μ s). Use of a 6MHz crystal will bring down the instruction execution speed to to 2 μ s.

When power is applied, the reset input must first go high and then low. A resistor-capacitor combination (R1-C3) is used to achieve this until the capacitor begins to charge. At a threshold of about 2.5V, the reset input reaches a low level and the microcontroller begins to function normally. Reset switch (S2) allows you to reset the program without having to interrupt the power.

One major feature of 89C51 microcontroller is the versatility built into the I/O circuits that connect the microcontroller to the outside world. Ports P0 through P3 of the microcontroller are not capable of driving loads that require tens of milliamperes (mA). Logic level current, voltage and power requirement for different versions of microcontrollers are given in Table I.

Driver circuit design. The microcontroller outputs a current of 1.7 mA. To drive the coil of a stepper motor requiring a torque of 7 kg-cm, 12V DC and 2 amp/phase, we have to use a driver circuit that amplifies the current from 1.7 mA to 3 amp.

As mentioned earlier, we have used

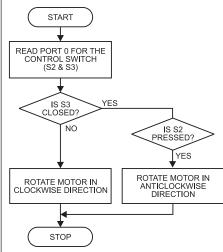


Fig. 3: Flow-chart of the program

BC548 and SL100 as the driver transistors for driving a low-power rated stepper motor such as the one used in earlier 14cm (5.5-inch) floppy drives. But for a 7 kg-cm stepper motor, a driver circuit using transistors SL100 and 2N3055 would be needed to amplify the current to 2.72 amp. Typically, SL100 and 2N3055 each has a gain (h_{fe}) of 40, but 2N3055 can handle larger current since it belongs to the family of power transistors. So a heat-sink is required to dissipate the heat generated.

The output gain of the Darlington pair of SL100 and 2N3055 transistors is:

TABLE II Clockwise Step Sequence of the Motor								
A1	A2	B 1	B2	A1	A2	B1	B2	Hex value
0	0	1	1	0	0	1	1	=33h
0	1	1	0	0	1	1	0	=66h
1	1	0	0	1	1	0	0	=CCh
1	0	0	1	1	0	0	1	=99h
		Anti-	clockwi	se Step S	Sequenc	e of the N	Iotor	
A1	A2	B 1	B2	A1	A2	B 1	B2	Hex value
0	0	1	1	0	0	1	1	=33h
1	0	0	1	1	0	0	1	=99h
1	1	0	0	1	1	0	0	=CCh
0	1	1	0	0	1	1	0	=66h

$$\begin{array}{rcl} A_{V_0} &=& A_{V1} \times A_{V2} \\ &=& 40 \times 40 \\ &=& 1600 \\ A_{V_0} &=& 1600 \end{array}$$

 $A_{V_0} = Io/Iin = 1600$

where Io is the output current and Iin is the input current of the Darlington pair.

Io = 1600×1.7 mA

= 2.72 A

Since the stepper motor has four coils, we need to use four Darlington pairs.

Programming

The program is written in Assembly language and compiled using ASM51 cross-assembler. The listing file is given at the end of this article. 89C51 microcontroller is programmed using Atmel's Flash programmer.

One-step rotation of the stepper motor used in this project equals 1.8°. When you program the motor for 200 steps, the motor makes one complete revolution, i.e. 360°. In the program, the line 'MOV R7, #0CAH' defines the rotation by 202 steps. The hex number '0CAH' equals the decimal number '202.' However, one can change the number of steps in the program as per one's requirement.

The step sequence is defined by the line 'MOV A, #033H.' Table II shows the step sequence for 100 steps to energise the windings of the stepper motor in clockwise

Fig. 4: Actual-size, single-side PCB for stepper motor control system using 89C51 microcontroller

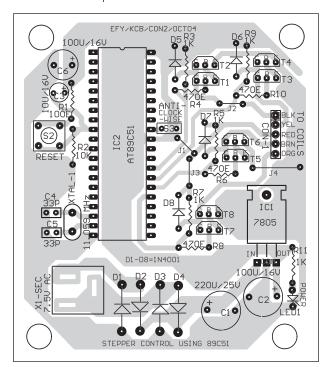


Fig. 5: Component layout for the PCB

and anti-clockwise directions. The rotor of the stepper motor is in a position of minimum reluctance and maximum flux. Thus by energising the windings (represented by A1, A2, B1 and B2), the rotor takes the position accordingly. In the program, the instructions 'RR A' and 'RL A' are used for clockwise and anti-clockwise, respectively.

S1 and S3 are toggle switches, while S2 is a tactile switch. Switch S3 interfaced to pin 32 of the microcontroller determines the direction of rotation. When the switch is opened the motor rotates in clockwise direction, and when the switch is closed the motor rotates in anti-clockwise direction.

For anti-clockwise rotation of the motor, reset switch S2 is to be pressed

momentarily after S3 is closed (see Fig. 3). In case you observe an abnormal motion of the motor either in clockwise or anticlockwise direction, pressing reset switch S2 momentarily will make the motor run smoothly.

Construction and working

You can assemble the circuit on any general-purpose PCB. An actual-size, single-side PCB for the stepper motor controller is shown in Fig. 4 and its component layout in Fig. 5.

Mount a 40-pin IC base for the microcontroller on the PCB, so you can remove the chip easily when required. Normally, six wires of different colours (two being red) are available for connection to the stepper motor. The sequence for connecting the stepper motor coils to the driver card is shown in Fig. 2.

After you are done with the hardware part, assemble the program (stpb1.asm) using ASM51 assembler. Load the hex file generated by ASM51 into a programmer and burn it into the chip. Now put the programmed chip on the IC base on the PCB.

Switch on the power supply to the circuit using switch S1. If motor rotation is not stable, press S2 momentarily. If the motor does not move at all, check the connections.

Note. The source code and the relevant files for this article have been included in CD.

STPB1.LST

		1	\$MOD51	1		13		0023	758D01	25	MOV TH1, #1D
0000		2	ORG 0000H	0010	7FCA	14	P12: MOV R7, #0CAH;	0026	D28E	26	SETB TR1
0000	E580	3	MOV A, P0	0012	7433	15	MOV A, #033H;	0028	308FFD	27	BACK: JNB TF1, BACK
0002	33	4	RLC A	0014	F5A0	16	P11: MOV P2, A;			28	
0003	500B	5	JNC P12	0016	03	17	RR A;	002B	C28E	29	CLR TR1
		6		0017	111B	18	ACALL DELAY	002D	C28F	30	CLR TF1
0005	7FCA	7	MOV R7, #0CAH;	0019	DFF9	19	DJNZ R7, P11	002F	DBEF	31	DJNZ R3, Z
0007	7433	8	MOV A, #033H;			20		0031	22	32	RET
0009	F5A0	9	P13: MOV P2, A;			21				33	END
000B	23	10	RL A;	001B	758910	22	DELAY: MOV TMOD, #10H				
000C	111B	11	ACALL DELAY	001E	7B05	23	MOV R3, #05	VER	SION 1.2k A	ASSEN	MBLY COMPLETE, 0 ERRORS
000E	DFF9	12	DJNZ R7, P13	0020	758B08	24	Z: MOV TL1, #8D	FOUN	D		

Readers' comments

What changes are to be made if I use a 12V DC stepper motor instead of the 5V DC stepper motor?

Jitendra Savaliya Through e-mail The author, Mandeep Singh Walia,

replies:

Mr Savaliya should use the Darlington pair of transistors SL100 and 2N3055. It has been mentioned in the text also under the heading 'driver circuit design.'

The point to be noted is that the power supply to the motor driver circuitry

and the controller circuitry should be different. The controller works off +5V and the power supply to the driver circuit will be +12V. The grounds for both the supplies will be the same. This configuration works well with the 12V DC stepper motor.

MICROPROCESSOR-BASED HOME SECURITY SYSTEM

B.B. MANOHAR

on't take the chance of becoming a victim of burglary, which is of ten accompanied by violence. Protect your family and valuables with this microprocessor-based home security system that will let you rest your head knowing that should any one try to break into your home, an alarm will go off and the police will be alerted immediately.

The 8085 microprocessor-based home security system, as shown in Fig. 1, consists of transmitter, receiver, phase-locked loop (PLL) and processing sections.

The transmitter section continuously transmits infrared (IR) rays, which are received by the receiver section. The received signal is further amplified and given to the PLL section, where its frequency is locked to the transmitted frequency.

When the IR signal is interrupted, the microprocessor starts working as per the program burnt into the erasable programmable read-only memory (EPROM) and controls the siren, telephone (via cradle and redial switches) and cassette player

TRANSMITTING SECTION

SIREN

REDIAL OF

PLAYER

(in which the alert message is recorded already) via the respective relays.

Circuit description

Fig. 2 shows the complete circuit of the 8085 microprocessor-based home security system.

In the transmitter section, NE555 (IC1) is wired as an astable multivibrator whose oscillating frequency is decided by resistors R1 and R2, preset VR1 and capacitor C1. Capacitor C3 bypasses the noise to ground, preventing any change in the calculated pulse-width.

The output of IC1 is fed to the base of transistor T1, which drives an infrared light-emitting diode (IR LED) to transmit the modulated IR signal. Resistor R4 limits the current flowing through the IR LED. Preset VR1 is used to vary the modulating frequency.

The transmitter and the receiver are arranged such that the transmitted IR rays fall directly onto phototransistor L14G1 (T2) of the receiver. The signal received by T2 is amplified by transistor T3 and operational amplifier µA741 (IC2).

PHASE-LOCKED LOOP

AND BUFFEF SECTION

CPU

8085

ROM

PROCESSOR

Series input resistor R8 and feedback resistor R9 determine the gain of op-amp IC2. The amplified signal is applied to pin 3 of PLL LM567 (IC3) through capacitor C4.

IC LM567 is a highly stable PLL with synchronous AM lock detection and power output circuitry. It is primarily used as a frequency decoder, which drives the load whenever a sustained frequency

	PARTS LIST
Semiconductor	
	- NE555 timer
IC2	- µA741 operational amplifier
IC3 IC4	- LM567 phase-locked loop - 8085 microprocessor
	- 2732A EPROM (4k)
IC6	- 74LS373 octal transparent
	latch - 8255A programmable periph-
	eral interface
	- MCT2E optocoupler
IC10	- 7805 5V regulator
IC11 IC12	- 7809 9V regulator - 74LS00 NAND gate
T1, T3-T9	- BC548 npn transistor
	- L14G1 phototransistor
	- 1N4148 switching diode
	- 1N4007 rectifier diode
LED1-LED3	
IR LED1	- Infrared LED
Resistors (all 4 unless stated of	4-watt, ±5% carbon, therwise):
R1, R2	- 5.6-kilo-ohm
R3, R16, R18-R22,	
	- 4.7-kilo-ohm
	- 100-ohm
	- 3.9-kilo-ohm
R6, R8, R12,	
R15, R17	- 1-kilo-ohm
R7, R10, R11,	
R13, R14	- 10-kilo-ohm
	- 100-kilo-ohm - 120-ohm
	- 470-ohm
	110 01111
	- 3.3nF ceramic disk
C2, C6, C13,	
	- 0.1µF ceramic disk
	- 0.01µF ceramic disk - 1nF ceramic disk
	- 10µF, 25V electrolytic
	- 2.2µF, 25V electrolytic
C9	 10µF,10V electrolytic
C10, C11	 10pF ceramic disk
C12	- 1000µF, 50V electrolytic
Miscellaneous	
X1	- 230V AC primary to 12V-0-
	12V, 300mA secondary trans-
v	former
X _{TAL} S1	- 3.5MHz crystal - Push-to-on switch
	- On/off switch
RL1, RL2,	
RL4, RL5	- 12V, 200-ohm, 1C/O relay
RL3	- 12V, 200-ohm, 2C/O relay

Fig. 1: Block diagram of the 8085 microprocessor-based home security system

PROGRAMMABLE PERIPHERAL INTERFACE 8255

RECEIVER AND AMPLIFIER SECTION

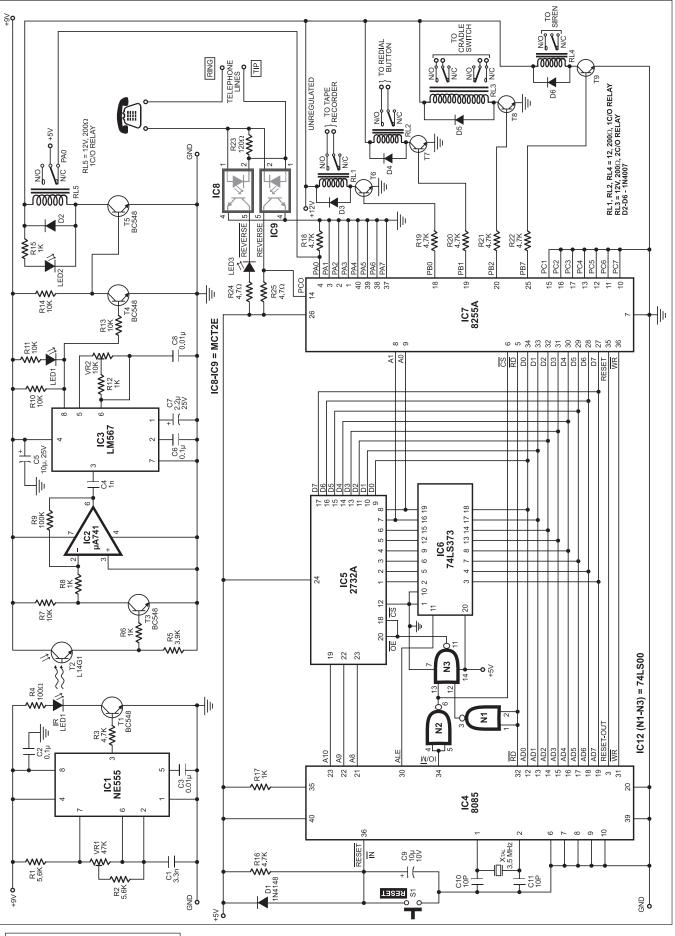


Fig. 2: Circuit of the 8085 microprocessor-based home security system

110 ELECTRONICS PROJECTS Vol. 25

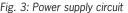
falling within its detection band is present in its self-biased input. The centre frequency of the detection band and output delay are independently determined by the external components.

In the absence of any input signal, the centre frequency of the PLL's internal free-running, current-controlled oscillator is determined by resistor R12 and capacitor C8. Preset VR2 is used for tuning IC3 to the desired centre frequency in the 6-10kHz range, which should match the modulating frequency of the transmitter. Capacitors C6 and C7 are used as low-pass filter (LPF) and output filter, respectively.

When the received signal is locked to the frequency of the transmitted signal, pin 8 of IC3 goes low and LED1 glows. Since pin 8 is connected to the base of transistor T4 through resistor R13, it is cut off and its collector voltage rises. As a result, transistor T5 is forward biased to energise relay RL5. The pole and normally-closed (N/C) contact of relay RL5 are connected to +5V and pin 4 (PA0) of IC7, respectively.

Normally, the transmitted IR signal falls on phototransistor T2, so relay RL5 is energised and there is no input to the processor via IC7. When the IR signal is interrupted, relay RL5 de-energises to provide a high (TTL-level) signal to the processor via port A of the programmable peripheral interface (PPI).


The processing section consists of an 8-bit 8085 microprocessor (IC4), EPROM IC 2732A (IC5), octal transparent latch IC 74LS373 (IC6) and programmable peripheral interface IC 8255A (IC7).


When the microprocessor gets a high signal from port A of IC7, it starts working as per the code loaded in the EPROM (IC5).

EPROM IC 2732A is a UV erasable and electrically programmable memory. It is organised as 4096 words×8 bits. The transparent window allows the user to expose the chip to ultraviolet light to erase the chip. After erasing the chip, a new program can be burnt into it.

IC 8085 (IC4) is an 8-bit, general-purpose microprocessor capable of addressing 64k of memory. It includes most of the logic circuitry required for performing computing tasks and communicating with the peripherals.

The low-order multiplexed address and data lines AD0 through AD7 of IC4 are connected to the EPROM (IC5) through the octal latch (IC6), while its high-order address lines A8 through A10 are directly connected to the EPROM. Address lines A0 through A7 are separated

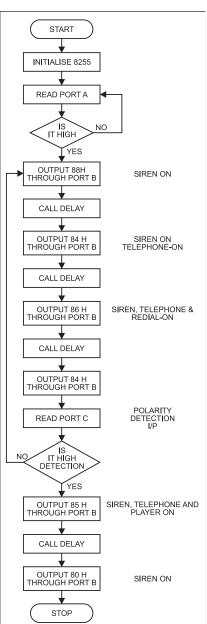


Fig. 4: Flow-chart of the program

from data lines D0 through D7 by latchenable signal (ALE).

Address latch-enable (ALE) pin 30 of the microprocessor is connected to latch-

enable pin 11 of IC6. When ALE is high, the latch is transparent, i.e. the output changes according to the input data. When ALE goes low, the low-order address is latched at the output of IC6.

Data lines D0 through D7 of the microprocessor are connected to the data lines of IC5 and IC7 each. Chip-select signal (\overline{CS}) for IC5 is generated by \overline{RD} and IO/M lines with the help of a NAND gate. The inverted IO/M signal provides CS signal to IC7.

IC 8255A (IC7) is a general-purpose programmable device compatible with most microprocessors. It has three programmable ports, any of which can be used for bidirectional data transfer. The 24 I/O pins can be grouped in two 8-bit ports (ports A and B) and the remaining eight bits as port C. The eight bits of port C can be used as individual bits or grouped in two 4-bit ports, namely, $\boldsymbol{C}_{_{\boldsymbol{U}\boldsymbol{P}\boldsymbol{P}\boldsymbol{E}\boldsymbol{R}}}$ and C_{LOWER}. Ports A and C are configured as the input ports, and port B is configured as the output port. Port A is used for intruder detection, port B for activating the siren, cassette player, telephone cradle switch and redial button, and port C for polarityreversal detection.

PB0 (pin 18), PB1 (pin 19), PB2 (pin 20) and PB7 (pin 25) of IC7 are connected to the bases of transistors T6 through T9 via resistors R19 through R22, respectively. A high signal on these pins energises relays RL1 through RL4. Switch S1 is used to reset IC4.

As you may be aware, telephone exchanges provide DC voltage reversal facility to PCOs (and other subscribers for a fee) to indicate call maturity. The same is assumed to have been incorporated in our telephone.

The circuit for detecting the polarity reversal in the telephone line is built around optocouplers IC8 and IC9. Normally, TIP is positive with respect to the RING lead of the telephone line. With the handset in off-hook position, a nominal loop current of 10 mA is assumed to flow through the telephone lines. Resistor R23

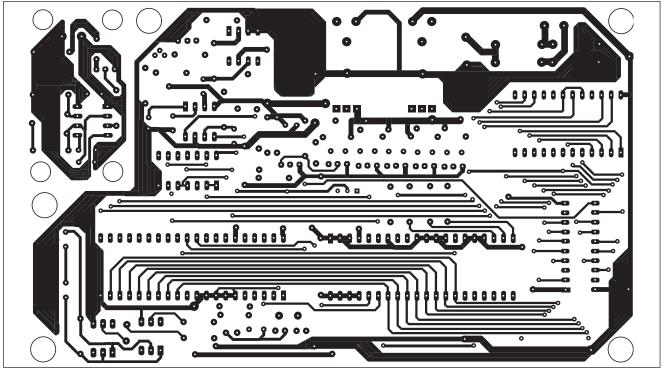


Fig. 5: Actual-size, solder-side PCB layout for the home security system

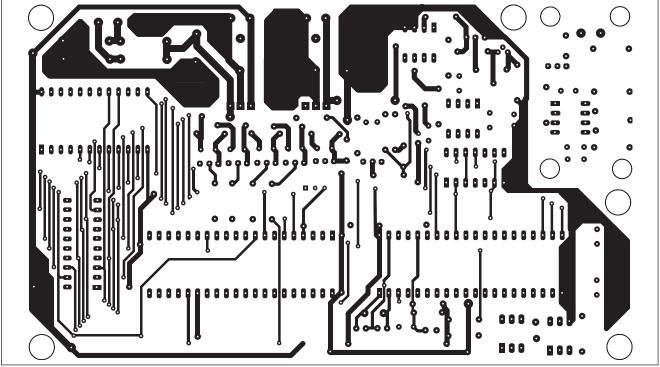


Fig. 6: Actual-size, component-side PCB layout for the home security system

is selected as 120 ohms to develop a voltage of 1.2V (which is adequate for an LED to turn on fully). When DC line voltage polarity reversal occurs, optocoupler IC8's internal LED conducts and LED3 glows to indicate polarity reversal. Simultaneously, optocoupler IC9's internal LED goes off and its pin 5 (collector) goes high to provide line-reversal sense signal to 8085 via pin 14 of 8255 PPI.

Fig. 3 shows the power supply circuit. The AC mains is stepped down by transformer X1 to deliver a secondary output of 12V AC at 300 mA. The transformer output is rectified by a full-wave bridge rectifier comprising diodes D7 through D10. Capacitor C12 acts as a filter to eliminate ripples. IC10 and IC11 provide regulated 5V and 9V power supplies, respectively. Capacitors C13 and C14 bypass any ripple present in the regulated outputs. Switch S2 acts as an 'on'/off' switch.

Relay connections. The cradle switch in the telephone instrument is a double-

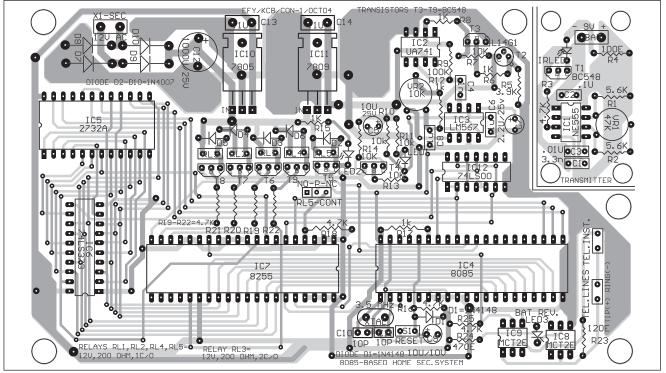


Fig. 7: Component layout for the PCB

pole, two-way switch. Replace this cradle switch with the contacts of DPDT relay RL3 as shown in Fig. 2. Now relay RL3 is used to implement the action of lifting the telephone handset.

There are four pads on the PCB of the telephone instrument where cradle switch is connected. The two pads which are shorted when the telephone handset is placed on the cradle are connected to the normally closed (N/C) contacts of relay RL3, while the other two pads which are shorted when the handset is off-hook are connected to the normally open (N/O) contacts of relay RL3.

Relay RL2 is connected in parallel to the redial button of the telephone instrument. When relay RL3 energises to emulate lifting of the handset, relay RL2 is energised to switch on the redial button and the already loaded telephone number of the police station or any other help provider is automatically dialled.

Relay RL4 activates the siren whenever the IR signal being received is interrupted. The siren sounds continuously until the user presses the reset button.

Relay RL1 is used to switch on the audio cassette player, in which the user's residential address and alert message to be conveyed to the police station are prerecorded. The speaker output of the cassette player is connected to the telephone's microphone to convey the alert message to the police station. The player gets switched off when the message is over.

Working of the circuit

The transmitting IR LED1 and phototransistor T2 of the receiver are fitted to the opposite pillars of the gate such that the IR rays emitted by the LED directly fall on the phototransistor.

The IR LED transmits a train of IR pulses. These pulses are received by the receiver and amplified by IC2. Output pin 8 of the PLL (IC3) is low when the PLL network is locked to the transmitter frequency and relay RL5 energises to make PA0 line of IC7 low.

When someone walks through the gate to enter your home, the transmitted signal is interrupted. Output pin 8 of the PLL network goes high and relay RL5 de-energies to make PA0 line of IC7 high. Now the microprocessor starts working as per the program loaded in the EPROM.

Relay RL4 energises to activate the siren. At the same time, relay RL3 energises to emutate lifting the telephone handset off the cradle to provide the dial tone. After a few seconds, relay RL2 energises to short the redial button contacts. After the loaded number is dialled, it switches off relay RL2. Then relay RL1 turns on the audio player.

Here we have provided the same polarity-reversal detection facility so that the audio player turns on only when polarity-reversal is detected.

The actual-size, double-side track layouts for solder and component sides of the PCB for the 8085 microprocessor-based home security system are shown in Figs 5 and 6, respectively, and their component layout in Fig. 7.

Software program

Fig. 4 shows the flow-chart of the Assembly language program. The device interface IC (IC7) is initialised with control word 99H. Ports A and C of IC7 act as input ports, while port B becomes the output port.

After initialisation, the 8085 microprocessor reads the status of port A. If port A is high, siren is activated. The telephone goes in off-hook condition and the emergency number is dialled through the redial button. Redial button gets switched off after the number is dialled. Now the microprocessor reads the status of port C and checks for the polarity reversal of the telephone line. When polarity reversal is detected, the audio player turns on to play the message. Otherwise, the process repeats from activation of the siren followed by emergency number dialling and so on. After delivering the message, the player automatically gets turned off. The siren sounds until the reset switch is pressed.

SECURITY.LST

			CROSS ASSEMBLER - VERSION 3.00b	35 0043	FE 01	CPI 01H
				36 0045	CA 59 00	
			LENAME : SECURITY.ASM	37 0048	1B	LOOP:DCX D
1	0000	OUTPUT	FILENAME : SECURITY.	38 0049	7A Do	MOV A,D
1	0000	917 00	ORG 0000H	39 004A	B3	ORA E
2	0000	3E 99	MVI A,99H ;Move control word to accumulator. OUT 03H :O/P control word to control registor.	40 004B	C2 48 00 05	JNZ LOOP DCR B
3 4	$0002 \\ 0004$	D3 03 DB 00	OUT 03H ;O/P control word to control registor. L1:IN 00H :Read port-A.	41 004E 42 004F	05 C2 3E 00	JNZ SEC
-	0004 0006	DB 00 FE 01		42 004F 43 0052	DB 02	
5	0006	C2 04 00		43 0052	DB 02 FE 01	IN 02H ;Read port-C. CPI 01H ;Accumulator value compared with 01H
6	0008 000B	3E 88	JNZ L1 ;Jump to L1 if it is not equal. L2:MVI A,88H :Move 88H to accumulator.		C2 0B 00	
8	000B 000D	3E 88 D3 01	OUT 01H ;O/P the accumulator content to port-B (Siren	45 0056 46 0059	3E 85	JNZ L2 ;Jump to L2 if it is not equal. OFF:MVI A.85H ::Move 85H to accumulator.
0	000D	D2 01	OVI OTH ;O/P the accumulator content to port-B (Siren ON).	46 0059 47 005B	5E 85 D3 01	OUT 01H ;O/P the accumulator content to port-B.
9	000F	06 FF	MVI B,FFH;	47 005B 48 005D	01 FF 01	LXI B,1FFH
9 10	0001	0E FF	LA:MVI C,FFH ;Delay Routine.	48 005D	11 FF FF	SEC0:LXI D.FFFFH
10		0D 0D	LB:DCR C	50 0063	1B	LOOP0:DCX D
12		C2 13 00	JNZ LB	51 0064	7A	MOV A,D
13		05	DCR B	52 0065	B3	ORA E
	0017	C2 11 00	JNZ LA	53 0066	C2 63 00	JNZ LOOP0
	001B	3E 84	MVI A.84H :Move 84H to accumulator.	54 0069	0B	DCX B
16		D3 01	OUT 01H ;O/P the accumulator content to port-B.	55 006A	78	MOV A,B
	001E	06 FF	MVI B,FFH	56 006B	B1	ORA C
18		0E FF	LAA:MVI C,FFH ;Delay Routine.	57 006C	C2 60 00	JNZ SEC0
19		0D	LBB:DCR C	58 006F	3E 80	MVI A,80H
20	0024	C2 23 00	JNZ LBB	59 0071	D3 01	OUT 01H
21	0027	05	DCR B	60 0073	11 FF FF	
22	0028	C2 21 00	JNZ LAA	61 0076	1B	LP:DCX D
23	002B	3E 86	MVI A,86H ;Move 86H to accumulator.	62 0077	7A	MOV A,D
24	002D	D3 01	OUT 01H :O/P the accumulator content to port-B.	63 0078	B3	ORA E
25	002F	$11 \; \mathrm{FF} \; \mathrm{FF}$	LXI D.FFFFH	64 0079	C2~76~00	JNZ LP
26	0032	1B	LOOP1:DCX D	65 007C	C3 73 00	JMP LP1
27	0033	7A	MOV A,D	66 007F	76	HLT
28	0034	B3	ORA E	67 0080		END
29	0035	C2 32 00	JNZ LOOP1	*****	*** SYMB	SOLIC REFERENCE TABLE ************
30	0038	3E 84	MVI A,84H ;Move 84H to accumulator.	L1 0004	L2	000B LA 0011 LAA 0021
31	003A	D3 01 OU	Γ 01H;O/P the accumulator content to port-B.	LB 0013	LBB	0023 LOOP 0048 LOOP0 0063
32		06 40	MVI B,40H	LOOP1	0032	LP 0076 LP1 0073 OFF 0059
33	003E	11 FF FF	SEC:LXI D,FFFFH	SEC	003E	SEC0 0060
34	0041	DB 02	IN 02H	LINE	S ASSEMBL	LED: 67 ASSEMBLY ERRORS: 0

SAFETY GUARD FOR THE BLIND

P. MURALI KUMAR

R or the blind, it's difficult to step out without someone's help. To make the life simpler for them, here's an electronic safety guard system that alerts them of any obstacle or object in their path. The system can detect obstacles within one metre.

The system comprises transmitter and receiver sections (see Fig. 1). The receiver section uses an embedded system that tells the voice processor to play the recorded message in case any obstacle is detected. Here the embedded system is a microcontroller programmed to take the appropriate action.

System operation

The transmitter is built around timer IC 555, which is designed to operate at a frequency of 38 kHz. This signal is amplified by a current amplifier and transmitted through infrared (IR) diodes.

The receiver section consists of an IR

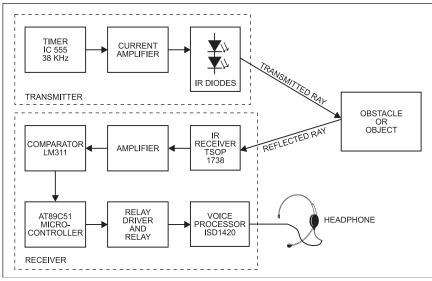


Fig. 1: Block diagram of the safety guard for the blind

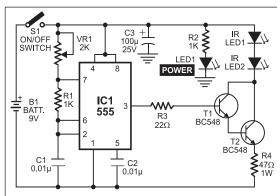


Fig. 2: Transmitter circuit

sensor TSOP1738, power amplifier, comparator IC LM311, microcontroller IC AT89C51, relay driver and voice processor IC ISD1420.

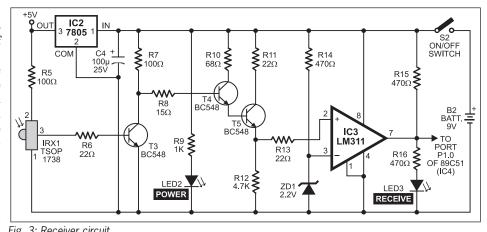
The IR rays reflected back from any obstacle are received by the IR receiver. The received signal is amplified by the amplifier stage, so even the weak signals can be picked up by the receiver. The amplified signal voltage is compared with a fixed threshold voltage at comparator LM311. The

D	ADTS I IST
	ARTS LIST
Semiconductors:	555 timor
IC1 IC2	- 555 timer - 7805 5V regulator
IC2 IC3	- LM311 comparator
IC4	- AT89C51 microcontroller
	chip
IC5	- ISD1420 voice processor
T1-T5, T7	- BC 548 npn transisor
T6	- BC558 pnp transisor
,	2 - Infrared LEDs (5mm dia.)
IRX1	- TSOP1738 IR receiver module
ZD1	- 2.2V, 1/4W zener diode
D1	- 1N4001 rectifier diode
LED1, LED2	- Red LED (5mm dia.)
LED3	- Green LED (5mm dia.)
LED4	- Yellow LED (5mm dia.)
LED5	- Red LED (5mm dia.)
Resistors (all ¼-u	watt, ±5% carbon):
R1, R2, R9, R18,	2010 001000
R19, R20, R21,	
R28	- 1-kilo-ohm
R3, R6, R11,	
R13	- 22-ohm
R4	- 47-ohm
R5, R7	- 100-ohm
R8 R10	- 15-ohm - 68-ohm
R12	- 4.7-kilo-ohm
R14, R15, R16	- 470-ohm
R17a	- 620-ohm
R22, R23, R17b	- 100-kilo-ohm
R24	- 5.1-kilo-ohm
R25	- 470-kilo-ohm
R26, R27	- 10-kilo-ohm
VR1	- 2-kilo-ohm preset
VR2	- 4.7-kilo-ohm preset
Capacitors:	
C1, C2	- 0.01µF ceramic disk
C3, C4	 100µF, 25V electrolytic
C5, C6	- 33pF ceramic disk
C7 C8 C14	- 0.001µF ceramic disk
C8, C14 C9, C10, C11,	- 4.7µF, 16V electrolytic
C13	- 0.1µF ceramic disk
C12	- 220µF, 16V electrolytic
	· · · · · · · · · · · · · · · · · · ·
Miscellaneous:	0171 //
B1, B2	- 9V battery
X _{TAL1}	 - 3.579MHz crystal oscilla- tor
S1, S2	- On/off SPST switch
S1, S2 S3, S4	- Push-to-on tactile switch
MIC	- Condensor microphone
JACK1	- Jack for headphone connec-
	tor
RL1	- 5V, 100-ohm, single-
	changeover relay

microcontroller.

When the comparator output goes high because of reflection of signal from an object, the microcontroller energises a relay via the relay driver. The relay contacts are used by a voice processor to play a prerecorded warning message (such as "hey, there's an obstacle"). The user can hear the played message using a headphone.

Circuit description


Transmitter section. Fig. 2 shows the transmitter circuit pow- Fig. 3: Receiver circuit ered by a 9V battery. When switch S1 is closed, LED1 glows to indicate the presence of power in the circuit. Timer IC 555 (IC1) is wired as an astable multivibrator. The output frequency (38 kHz) of IC1 at its pin 3 can be varied using VR1 (2k). The output of IC1 is given to the base of npn transistor T1 (BC548) via resistor R3. Transistors T1 and T2 (each BC548) form a Darlington pair that boosts the output current to drive the two infrared diodes connected in series at the collector of the Darlington pair (IR LED1 and IR LED2). The output signal frequency of 38 kHz is transmitted by the IR LEDs.

Receiver section. Fig. 3 shows the receiver circuit powered by a 9V battery. When

switch S2 is closed, LED2 glows to indicate the presence of power in the circuit. The 9V supply is down-converted to 5V using regulator IC 7805 (IC2) to drive the IR receiver module (TSOP1738), microcontroller and voice processor sections.

The IR rays reflected from any object in the path of the user are received by the IR receiver module. This signal is amplified by the power amplifier stage comprising transistors T3, T4 and T5 (each BC548). The amplified output at the emitter of transistor T5 is given to the non-inverting input (pin 2) of comparator IC LM311 (IC3) through resistor R13.

A reference voltage of 2.2V developed across zener diode ZD1 is connected to the inverting input (pin 3) of IC3. When the voltage level at pin 2 increases beyond the reference voltage, output pin 7 of IC3 goes high, which is indicated by the glowing of

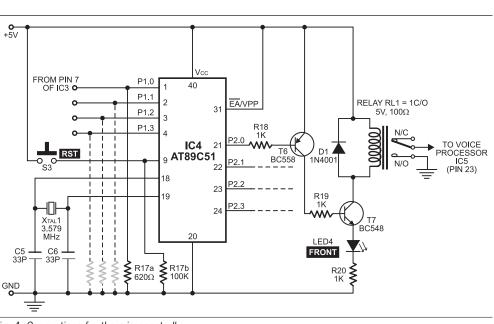


Fig. 4: Connections for the microcontroller

LED3. This output is given to the I/O port P1.0 of microcontroller IC4.

Microcontroller section. Microcontroller chip AT89C51 (IC4) acts as a switching hub only and can be replaced by any other switching circuit. The use of this chip in this circuit is to show how to interface an embedded system in a home made project. The program burnt into this chip decides the action when a signal is received at its input.

As shown in Fig. 4, ports P1.0 through P1.3 of IC4 are used as the input ports. The corresponding outputs are available at ports P2.0 through P2.3. The output of the comparator is fed to port P1.0 and the corresponding output at port P2.0 is fed to the base of transistor T6 (BC558) through resistor R18.

Normally, when no signal is applied at input port P1.0, output port P2.0 is high.

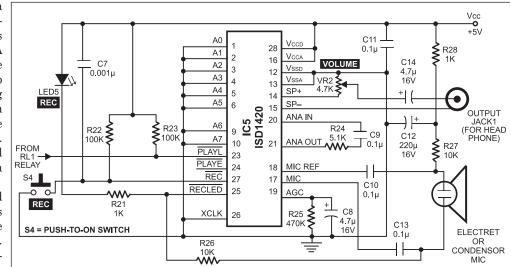
When input P1.0 becomes high, output P2.0 goes low and transistor T6 conducts. This, in turn, drives transistor T7 (BC548) to energise relay RL1, which is indicated by glowing of LED4. In case the circuit behaves abnormally, press reset switch S3 momentarily to reset the circuit.

Voice processor. The voice processor section receives regulated 5V DC supply from regulator IC2. Voice processor IC ISD1420 (IC5) used here is a 28-pin chip from Winbond. It can record a voice message up to 20 seconds long. The recorded message can be played at the press of a button connected to one of its pins.

As shown in Fig. 5, pushbutton switch S4 connected to pin 27 of IC5 is used for recording the message in the processor. Pin 23 is used for playing the recorded message. The condenser microphone for inputing the voice message is connected to pins 17 and 18 of IC5 via capacitors C13 and C10, respectively. The message is output via pins 14 and 15. A loudspeaker or headphone can be directly connected to these pins through a coupling capacitor. Here, we've used an output jack (JACK1) at these pins for headphone connection. Preset VR2 is used to control the volume and C14 acts as a coupling capacitor.

Keep switch S4 pressed (maximum for 20 seconds) as you speak into the microphone for recording the message. Release switch S4 after recording is done. To listen to the recorded message through the speaker or the headphone.

playback pin 23 (PLAYL) must be held down to ground. Here, energisation of relay RL1 pulls pin 23 to ground and thus enables playback of the recorded message.

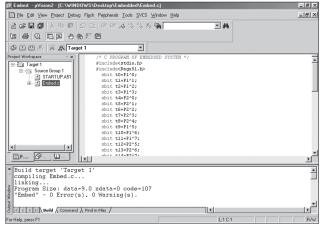

The pole of relay RL1 is connected to pin 23 of IC5, while the normally open (N/O) contact is grounded. When relay RL1 energises, the pole of the relay connects to the N/O contact enabling the voice processor to play the recorded message and the message can be heard from the headphone.

Software program

Written in C language, the software program (Embed.c) for the microcontroller is simple and easy to understand. You don't have to write long Assembly language program for this operation. The program is converted into Intel-Hex format for loading to the microcontroller. Here, we've used cross-compiler C51 version 7.10 from Keil Software for conversion. The demo version of this compiler is available for free on the Website 'www. keil.com.'

The C program includes '<Regx51. h>' file, which defines pseudo-variables to interact with memory-mapped devices and I/O ports of the microcontroller. The I/O ports P1.0 through P2.7 of AT89C51 are defined in the program. The program line "{if(t0==0) { t4=1;" instructs the microcontroller that if its input port P1.0 is low, its output port P2.0 should be high. Otherwise, P2.0 must be low.

The listing file (Embed.lst) generated by Keil compiler is given at the end of



the recorded message through Fig. 5: Single-chip record/playback circuit using ISD1420 chip

this article. Note that this listing file cannot be recompiled in any other assembler.

Program compilation

After installing Keil C51 in your system, you can compile C program and generate hex file in either DOS or Windows mode. For DOS-mode operation, refer to the 'Temperature Indicator Using

Screenshot of editing window

AT89C52' article published in July issue. Every time you create a new program in Keil C51 version 7.10, you must create a project file with '.uv2' extension. Then write the program in 'Edit' window, compile it and link it. (The compiled program with '.hex' and '.lst' files has been included in CD.)

If you want to create your own program, the steps for Windows mode are:

1. Install Keil software in 'C' drive. After installation, 'Keil uVision2' icon is automatically created on the desktop.

2. Double-click 'Keil uVision2' on the desktop.

3. Suppose you have kept 'Embed.c' under 'C:\Windows\Desktop\Embedded' folder. Open 'Embed.c' from 'File' menu.

4. From 'Project' menu bar, select 'New Project.' Name the new project and save it with '.uv2' extension.

5. Select CPU as 'Atmel/AT89C51.'

6. Choose 'Yes' in the option 'Copy

standard 8051 code to current project folder.'

7. From 'View' menu, select 'Project Window.' 'Project Workspace' window appears on the left-hand side of the PC screen.

8. Double-click 'Target 1.'

9. Right-click 'Source Group1' and select 'Add files to Group 'Source Group1." A window appears.

10. Add 'Embed.c' and close this window.

11. Double-click 'Source Group1' in 'Project Workspace' window to get 'Embed. c' (see the screenshot).

12. Right-click 'Embed.c' in 'Project' window, select 'Options for File Embed. c' and choose 'File Type' as 'C source file' under 'Properties.'

13. Again from 'Project' menu, select 'Options for Target 1.' An 'Option' screen appears.

14. Choose 'Output' and tick 'Hex File'

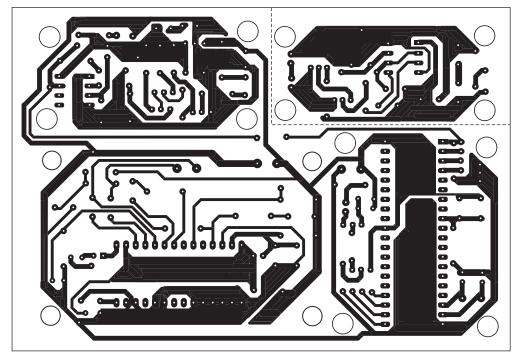


Fig. 6: Actual-size, single-side PCB for transmitter and receiver circuits of the safety guard

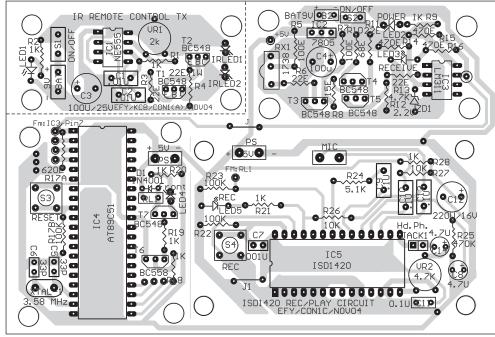


Fig. 7: Component layout for the PCB

for generating the hex file. Again choose 'Listing' option and tick 'Conditional' and 'Assembly Code.'

15. Open 'Project' menu and select 'Build Target' or press 'F7' key.

For any syntax error, the window will contain a list of errors with the line numbers. Double-clicking an error message will cause the corresponding line in the source edit window to be highlighted. Correct errors, if any, and press 'F7' key again.

If compilation is successful, an object file with '.obj' extension is created for the source file. The compiler shows "Embed"-0 Error(s), 0 Warning(s)' in the output window just below the project window. It also produces a listing file with '.lst' extension for the source file. Then the system links all the generated files into a combined hex file (with '.hex' extension) suitable for loading into the chip. In this example, the files created are 'startup.obj,' 'startup.lst,' 'Embed.obj,' 'Embed.lst' and 'Embed.hex.'

16. Close the screen and go to 'Embedded' folder to see the generated hex and listing files.

17. Load the hex file into the microcontroller chip using a programmer.

We've used Atmel Flash Programmer V.1 from Frontline Electronics. It is a serial port programmer. The procedure for loading the hex file into Atmel Flash programmer is given below:

1. Double-click the icon of the programmer.

2. Select the appropriate COM port from 'Settings' menu bar.

3. Select '89C51' from 'Selection' option in 'Device' menu bar.

4. Load the hex file from 'File' menu.

5. Choose 'Auto' in 'Device' menu bar. This will automatically erase the previous program, if any, and load the new program into the chip.

Construction and working

The transmitter and receiver circuits can be assembled on separate general-purpose PCBs. Both the circuits must be separated or covered by some opaque, non-conducting material so that no stray signal from the transmitter falls on the receiver. The units can be carried in a bag, with the IR transmitting LEDs and the receiver sensor (IRX1) mounted on the front side of

the user's belt by extending their leads using shielded wires.

This system uses only one pair of transmitter and receiver circuits for alerting against the obstacles in the path of the user, but it can be extended to use three more pairs for detection of objects on the right, left and back side. As shown in Fig. 4, input ports P1.1, P1.2 and P1.3 of AT89C51 and their corresponding output ports P2.1, P2.2 and P2.3 are

118 ELECTRONICS PROJECTS Vol. 25

left unused. These ports can be used for detection of objects on the right, left and back side. Separate pairs of transmitter and receiver circuits are required for all the sides.

If all the eight ports are to be used, use the same circuits as used at ports P1.0 and P2.0 for all the ports (shown by dotted lines in Fig. 4). Apart from adding these circuits to the microcontroller section, you also need to use the same but separate transmitter (Fig. 2), receiver (Fig. 3) and voice processor circuits (Fig. 5) for each input-output port combination. (Separate voice processor is not required if you make use of the multiple-message record/play capability of IC APR9600 as in 'Voice Recording and Playback Using APR9600 Chip' construction project published in EFY's September '04 issue. Relays can also be replaced by transistor switches.)

The combined actual-size, single-side PCB for the transmitter and receiver circuits is shown in Fig. 6 and its component layouts in Fig. 7. The transmitter and receiver PCBs can be separated by cutting the PCB along the dotted lines.

EFY note. The source code and other relevant files of this project have been included in CD.

EMB	FD.C				
/* C PROGRAM OF EMBEDDED SYSTEM */ #include <regx51.h> sbit t0=P1^0; sbit t1=P1^1; sbit t3=P1^3; sbit t3=P2^0; sbit t5=P2^1; sbit t5=P2^1; sbit t8=P2^4; sbit t9=P1^5; sbit t10=P1^6; sbit t11=P1^6; sbit t11=P1^7; sbit t12=P2^5; sbit t13=P2^6; sbit t14=P2^7; void main() { t9=t10=t11=t12=t13=t14=0; t0=1; t1=1;t2=1;t3=1;/t3=t2=t1=t0=1; for(;;) { l1: ift0==0)</regx51.h>	3ED.C $ \begin{array}{c} t5=t6=t7=t8=0; \\ goto 11; \\ } \\ l2:if(t1==0) \\ { t5=1; \\ t4=t6=t7=t8=0; \\ goto 12; \\ } \\ l3:if(t2==0) \\ { t6=1; \\ t4=t5=t7=t8=0; \\ goto 13; \\ } \\ l4:if(t3==0) \\ { t7=1; \\ t4=t5=t6=t8=0; \\ goto 14; \\ } \\ t8=1; \\ t4=t5=t6=t7=0; \\ } \\ \end{array} $				
{ 					
EMBE	TIST				
C51 COMPILER V7.10 EMBED $10/11/2004 10:52:09 PAGE 1$ C51 COMPILER V7.10, COMPILATION OF MODULE EMBED OBJECT MODULE PLACED IN embed.OBJ COMPILER INVOKED BY: C:\KEIL\C51\BIN\C51.EXE embed.c BROWSE DEBUG OBJECTEXTEND CODE line level source 1 /* C PROGRAM OF EMBEDDED SYSTEM */ 2 #include <stdio.h> 3 #include<stdio.h> 3 #include<stdio.h> 4 sbit t3=P1^3; 1 sbit t5=P2^4; 13 sbit t9=P1^5; 14 sbit t10=P1^6; 15 sbit t11=P1^7; 16 sbit t12=P2^5; 17 sbit t13=P2^6; 18 sbit t14=P2^7; 19 void main()</stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h></stdio.h>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ASSEMBLY LISTING OF GENERATED OBJECT CODE ; FUNCTION main (BEGIN) ; SOURCE LINE # 19 ; SOURCE LINE # 20				

				; SOURCE LINE # 21	0035	D2A2	SETB	t6		
0000	C2A7	CLR	t14		0000	Dana	SHID	00	; SOURCE LINE # 40	
0002		CLR	t13		0037	C2A4	CLR	t8	, see chell blittl # 10	
0004		CLR	t12		0039	C2A3	CLR	t7		
0006		CLR	t11		003B	C2A1	CLR	t5		
0008		CLR	t10		003D	C2A0	CLR	t4		
000A		CLR	t9						; SOURCE LINE # 41	
				; SOURCE LINE # 22	003F	80F1	SJMP	13	,	
000C	D290	SETB	t0	,					; SOURCE LINE # 42	
000E	D291	SETB	t1						; SOURCE LINE # 43	
0010		SETB	t2		0041		14:		,	
0012		SETB	t3		0041	20930C	JB	t3,?C00	10	
				; SOURCE LINE # 23					; SOURCE LINE # 44	
				; SOURCE LINE # 24					; SOURCE LINE # 45	
				; SOURCE LINE # 25	0044	D2A3	SETB	t7	,	
0014		l1:		,					; SOURCE LINE # 46	
0014	20900C	JB	t0,12		0046	C2A4	CLR	t8	, see chell blittl # 10	
0011	200000	015		; SOURCE LINE # 26	0048	C2A2	CLR	t6		
				; SOURCE LINE # 27	004A		CLR	t5		
0017	D2A0	SETB	t4	,	004C	C2A0	CLR	t4		
0017	Dario	SHID	01	SOURCE LINE # 28	0010	02110	0111		; SOURCE LINE # 47	
0019	C2A4	CLR	t8		004E	80F1	SJMP	14	,	
001E		CLR	t7		00111	0011	001011		; SOURCE LINE # 48	
001E		CLR	t6		0050	?C0	010:		,	
001F		CLR	t5						; SOURCE LINE # 49	
0011	01111	0 Lit	00	; SOURCE LINE # 29	0050	D2A4	SETB	t8	, see chell lind # 10	
0021	80F1	SJMP	11	,					; SOURCE LINE # 50	
				; SOURCE LINE # 30	0052	C2A3	CLR	t7	,	
				; SOURCE LINE # 31	0054	C2A2	CLR	t6		
0023		12:		,	0056	C2A1	CLR	t5		
0023	20910C	JB	t1.l3		0058	C2A0	CLR	t4		
			,	; SOURCE LINE # 32					; SOURCE LINE # 51	
				; SOURCE LINE # 33	005A	80B8	SJMP	l1	,	
0026	D2A1			SETB t5					; FUNCTION main (END)	
				; SOURCE LINE # 34						
0028	C2A4	CLR	t8	,	MODU	ULE INFOI	RMATIO	N: STAT	IC OVERLAYABLE	
002A	C2A3	CLR	t7		COI	DE SIZE	=	92		
002C	C2A2	CLR	t6		CON	ISTANT SI	ZE	=		
002E	C2A0	CLR	t4		XDA	ATA SIZE	=			
				; SOURCE LINE # 35	PDA	ATA SIZE	=			
0030	80F1	SJMP	12	,	DAT	TA SIZE	=			
				; SOURCE LINE # 36	IDA	TA SIZE	=			
				; SOURCE LINE # 37	BIT	SIZE	=			
0032		13:			END	OF MODUI	LE INFO	RMATION	۲.	
0032	20920C	JB	t2,14							
				; SOURCE LINE # 38						
				; SOURCE LINE # 39	C51 C	OMPILATI	ION COM	IPLETE.	0 WARNING(S), 0 ERROR(S)	
				·						

DIGITAL COMBINATION LOCK

SREEKUMAR V.

e've seen in movies highly secured dens that require one to press certain number combination to gain entry. These locking systems use expensive microprocessors and PCs, which a common man can't afford.

Here is a digital combination lock using solidstate memory ICs that costs much less. As shown in Fig. 1, the system uses two key sets (user and security key sets), D-type flip-flops, comparators and solenoid. The user code comprising eight bits is compared with the preset security code of the same length (eight bits). If the user code matches with the security code, access is granted for opening the code lock by pressing an 'Enter' key. The lock can be closed/reset by using the reset key.

Circuit description

Fig. 2 shows the power supply circuit for the lock. The AC mains is stepped down by transformer X1 to deliver a secondary output of 9V AC at 300 mA. The transformer output is rectified by a fullwave bridge rectifier comprising diodes D1 through D4. Capacitor C2 acts as a filter to eliminate ripples. Regulator IC 7805 (IC9) provides regulated 5V power supply to the circuit.

Fig. 3 shows the circuit of the digital combination lock. The user key set comprising switches is connected to D-type flip-flop 74LS74 ICs (IC1 through IC4), which act as the storage devices for the sequence entered by pressing push-to-on tactile switches S1 through S8.

Pressing any of the user keys results in logic 1 to be clocked to the 'Q' output of the respective flip-flop of IC 74LS74. Else, the 'Q' outputs of the flip-flops of IC1 through IC4 remain at logic 0. The outputs of IC1 through IC4 are fed to 'A' inputs of two 4-bit magnitude comparator 74LS85 ICs (IC5 and IC6). The 'B' inputs of IC5 and IC6 are connected to the security key set (S9 through S16). Output pin 6 of IC5 (O_{A=B}) and input pin 3 of IC6 (I_{A=B}) are cascaded to obtain the 8-bit sequence.

Output pin 6 of comparator IC5 goes high if the input bit sequence is the

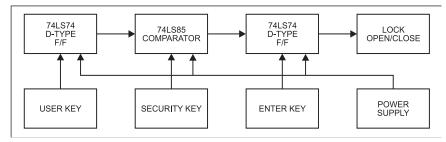


Fig. 1: Block diagram of digital combination lock

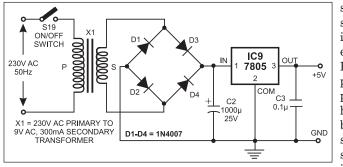
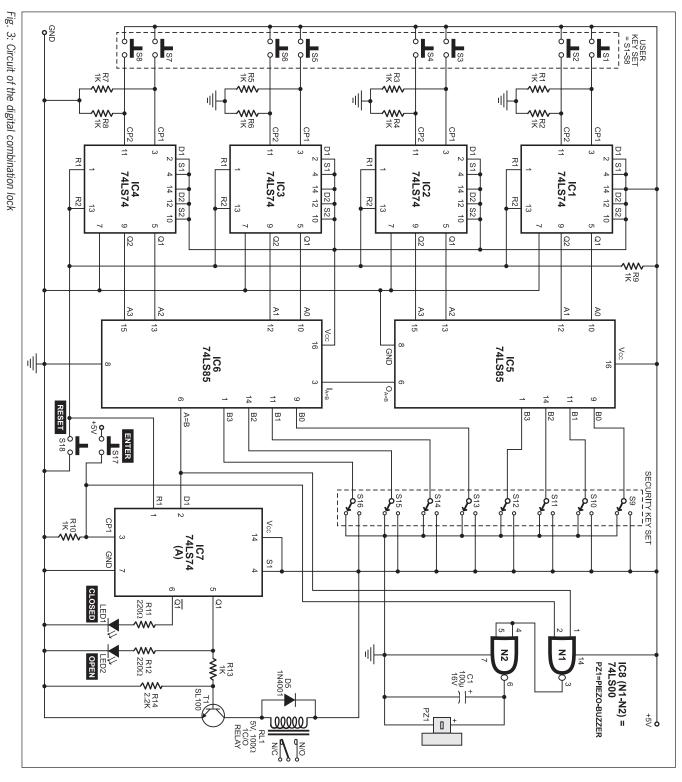


Fig. 2: Power supply circuit


same as the preset bit sequence, i.e. 'A3A2A1A0' is equal to 'B3B2B1 B0.' Similarly, output pin 6 of comparator IC6 goes high if the input bit sequence is the same as the preset bit sequence, i.e. 'A3A2A1A0' is

	PARTS LIST
Semiconductor	e.
	- 74LS74 dual D-type flip-flop
IC5, IC6	- 74LS85 4-bit magnitude
,	comparator
IC8	- 74LS00 quad 2-input NAND
	gate
IC9	- 7805 5V regulator
LED1	- 5mm red LED
LED2	- 5mm green LED
T1	 SL100 npn transistor
D1-D6	- 1N4001 rectifier diode
Resistors (all 4	4-watt, ±5% carbon):
R1-R10, R13	
R11, R12	- 220-ohm
R14	- 2.2-kilo-ohm
Capacitors:	
Cupacitors.	- 100µF, 16V electrolytic
C2	- 1000µF, 25V electrolytic
C3	- 0.1µF ceramic disk
	origin containing dish
Miscellaneous: X1	AND A Contracts ON A C
λ1	- 230V, AC primary to 9V AC, 300mA secondary transformer
S1-S8, S17,	500mA secondary transformer
S1-50, 517, S18	- Push-to-on tactile switch
S9-S16	- SPDT switch
S19	- On/off switch
PZ1	- Piezobuzzer
RL1	- 5V, 200-ohm 1C/O relay
	- Solenoid or equivalent

equal to 'B3B2B1B0.' The high output of IC6 is fed to flip-flop IC7. Pressing 'Enter' key (S17) causes a clock transition at the input of IC7 and its Q1 output (pin 5) goes high. As a result, transistor T1 conducts and relay RL1 energises. At the same time, the solenoid connected to the relay contacts moves back to unlock the door.

In case the user input bit sequence doesn't match with the preset security bit sequence, the output of IC6 remains low and therefore pressing 'Enter' key doesn't activate the relay driver transistor. Consequently, the solenoid doesn't move back to unlock the door.

Solenoid connections are shown in Fig. 4. Driving the solenoid with DC is very simple. Just switch on the DC supply to it using a relay or transistor, and the solenoid operates. However, when the solenoid is driven, flywheel diodes are necessary. The large inductance of the coil can cause large voltage spikes to appear across the switching element (relay or

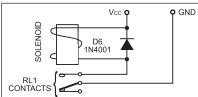


Fig. 4: Solenoid connections

122 ELECTRONICS PROJECTS Vol. 25

transistor doing the switching), unless the current flowing through the coil is allowed to dissipate slowly.

When relay RL1 energises, the current flowing down through the solenoid coil is limited by the resistance of the coil. The inductors tend to oppose the quick change in the current flowing through them and generate a voltage of their own to stop this happening. When relay contacts open, the inductor generates a voltage to make the current to continue down through the coil, and the current flows up through the diode and back into the inductor. This is the reason why a freewheeling diode (D6) is

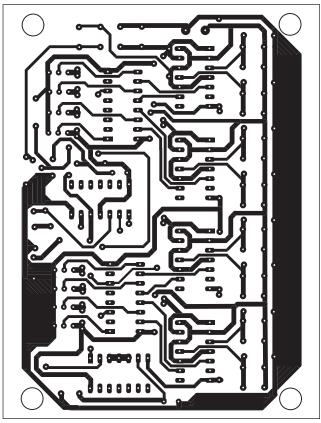


Fig. 5: Actual-size, single-side PCB for digital combination lock

used here. The logic built around NAND gates N1 and N2 enables the buzzer when the sequence matches and 'Enter' key is pressed. Capacitor C1 prolongs the buzzer sound.

Operation

This circuit is designed for 8-digit binary codes and can be divided into two parts, namely, the user key panel and the security key panel. Switches S1 through S8 shown within the rectangular dotted lines form the user key panel. Similarly, switches S9 through S16 shown within another rectangular dotted lines form the security key panel.

Suppose you want to set the password as '1578.' For this, connect the first switch (S9), fifth switch (S13), seventh switch (S15) and eighth switch (S16) of the security key set to +5V and ground all the remaining switches. To open the lock, you'll have to momentarily press the first switch (S1), fifth switch (S5), seventh switch (S7) and eighth switch (S16) of the user key set to match with the preset code in the security key set and then press 'Enter' key (S17).

If the entered sequence matches with the preset sequence, the buzzer sounds to indicate the correct entry and LED2 glows to indicate that the lock has opened. If the sequence doesn't match, the buzzer doesn't sound and LED1 glows to indicate that the door is not opening. For the next trial, press reset key S18.

Pressing 'Enter' key obviates fooling of the system by random entries when someone is trying to open the lock. With eight digits, up to 2^8 combinations are possible, which makes it very difficult for a person to keep on trying by pressing 'Enter' every time. After each entry, reset switch S18 should also be pressed to clear all the flip-flops (IC1 through IC4 and IC7).

5V

OPSO

•

o

Buz

@ZØ

-

•

00

-

•

•

JKOR1

-0

4009

Ó

COMB. LOCK

Fig. 6: Component layout for the PCB

DIG.

CON2/

KCB/

Fabrication

An actual-size, single-side PCB for the digital combination lock (including the user and security key sets) is shown in Fig. 5 and its component layout in Fig. 6. If you want to install the user and security key sets away from the gate, you can separate them from the main circuit by using extended wires. An electromechanical device such as relay, magnetic bell or solenoid can be used to open the lock. The power supply circuit can be easily wired on a separate general-purpose PCB.

1000

ENTER

61)

QLO

0 0

8000

000

8000

8000 S15 **8**000 S16 **8**000

Precautions

1. Use a TTL logic gate such as 74LS74, 74LS85 or 74LS00 to minimise power consumption.

2. The solenoid must move smoothly to lock and unlock.

3. Check the security key terminals using multimeter before connecting into the PCB board.

ULTRASONIC LAMP-BRIGHTNESS CONTROLLER

PRADEEP G.

ere is a low-cost, wireless lampbrightness controller. It uses ul trasonic sound waves for remote control of the lamp's brightness.

As with any other remote control, the system basically comprises a transmitter and a receiver circuit. Frequencies above 20 kHz are inaudible (ultrasonic). The transmitter circuit generates ultrasonic sound of 40-50kHz frequency. The receiver senses the ultrasonic sound from the transmitter and enables a unijunction transistor (UJT) based relaxation oscillator, which, in turn, controls the lamp brightness by phase control of a siliconcontrolled rectifier (SCR).

Fig. 1 shows the block diagram of the ultrasonic lamp-brightness controller. The received signals are amplified and given to the comparator after rectification and filtering. The comparator provides clock pulse to the decade counter. The output of the decade counter enables the UJT oscillator to control the phase angle of the current through the load via the SCR.

Fig. 2 shows the circuit of the ultrasonic transmitter. The transmitter uses a free-running astable multivibrator built around NOR gates of CD4001B that oscillates at a frequency of 40 to 50 kHz.

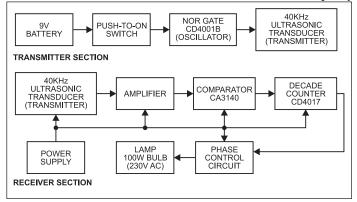


Fig. 1: Block diagram of the ultrasonic lamp-brightness controller

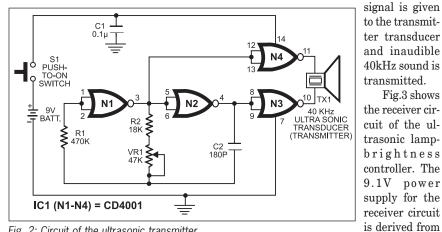


Fig. 2: Circuit of the ultrasonic transmitter

PARTS LIST					
Semiconductors					
IC1	- CD4001 NOR gate				
IC2	- CA3140 operational				
	amplifier				
IC3	- CD4017 decade counter				
T1, T2	- BC549C npn transistor				
T3	- 2N2646 unijunction				
	transistor				
SCR1	- TYN6004 silicon-controlled				
	rectifier				
D1-D12	 1N4148 switching diode 				
D13-D16	- 1N4007 rectifier diode				
ZD1	- 9.1V, 0.5W zener diode				
Resistors (all ¼	-watt, ±5% carbon, unless men-				
tioned otherwise	e):				
R1	- 470-kilo-ohm				
R2, R4	- 18-kilo-ohm				
R3	- 56-kilo-ohm				
D5	0.0 bile ehm				

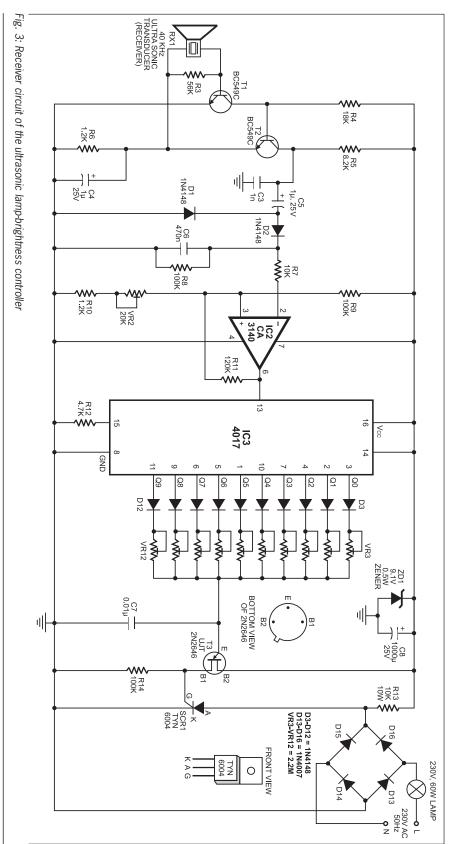
	K1	- 470-K110-01111
An ultrasonic	R2, R4	- 18-kilo-ohm
transducer is	R3	- 56-kilo-ohm
used here to	R5	- 8.2-kilo-ohm
transmit the ul-	R6, R10	- 1.2-kilo-ohm
trasonic sound.	R7	- 10-kilo-ohm
The trans-	R8, R9, R14	- 100-kilo-ohm
mitter is pow-	R11	- 120-kilo-ohm
ered from a 9V	R12	- 4.7-kilo-ohm
PP3 cell. Preset	R13	- 10-kilo-ohm, 10W
	VR1	- 47-kilo-ohm preset
VR1 is used	VR2	- 20-kilo-ohm preset
for setting the	VR3-VR12	- 2.2-mega-ohm preset
frequency to	Capacitors:	
40 kHz. When	C1	- 0.1µF ceramic disk
switch S1 is	C1 C2	- 180pF ceramic disk
pressed, the	C2 C3	- 1nF ceramic disk
signal is given	C4, C5	- 1µF, 25V electrolytic
to the transmit-	C4, C5 C6	- 470nF ceramic disk
ter transducer	C0 C7	- 47011F ceramic disk
	C8	•
and inaudible	6	- 100µF, 25V electrolytic
40kHz sound is	Miscellaneous:	
transmitted.	S1	- Push-to-on switch
Fig.3 shows	TX1	- 40kHz ultrasonic
the receiver cir-		transmitter
cuit of the ul-	RX1	- 40kHz ultrasonic receiver
trasonic lamp-		- 230V, 60W lamp
P		-

230V, 50Hz AC mains. The AC mains is rectified by diodes D13 through D16 and limited to 9.1V by using zener diode ZD1. Resistor R3 is used as the current limiter. Capacitor C8 acts as a filter to eliminate

ripples.

The receiver transducer senses 40kHz signals from the transmitter and converts them into equivalent electrical variation of the same frequency. These signals are amplified by transistors T1 and T2, then rectified and filtered.

The filtered DC voltage is given to the inverting pin 2 of operational amplifier CA3140 (IC2). The non-inverting pin 3 of IC2 is connected to a variable DC voltage via preset VR2 that determines the threshold value of the ultrasonic signal received by the receiver for controlling the lamp brightness.


Operational amplifier CA3140 has gate-protected MOSFET transistors in the input circuit to provide very high input impedance, very low input current and high-speed performance. It is internally phase-compensated to achieve stable operation.

The clock pulse from IC2 is applied to 5-stage Johnson decade counter IC 4017 (IC3). Johnson counters are a variation of standard ring counters, with the inverted output of the last stage fed back to the input of the first stage. They are also known as twisted ring counters. An *n*-stage Johnson counter yields a count sequence of 2n length, so it may be considered to be a mod-2n counter.

For each pulse from the op-amp, the output of IC3 changes sequentially from Q0 to Q9. Q0 through Q9 outputs of IC3 are connected to presets VR3 through VR12 via diodes D3 through D12. The other ends of presets are shorted and connected to capacitor C7 and the emitter of the UJT (T3). The preset-capacitor combination at the emitter of the UJT forms a relaxation oscillator around the UJT.

Initially, the UJT is in cut-off region and its internal input diode is reverse-biased. When Q0 output of decade counter CD4017 (IC3) goes high, capacitor C7 starts charging through preset VR3. When the voltage across the capacitor becomes high enough, it forward biases the internal input diode of the UJT, and the capacitor discharges into the low-resistance region between the UJT's emitter and resistor R14. Discharging continues until the voltage across the capacitor becomes zero and the internal diode of the UJT is again reverse-biased. When the diode is reverse-biased, capacitor C7 starts charging again.

The process of charging and discharging produces a sawtooth pulse. This pulse triggers SCR1 to control the phase

angle of the current through the lamp. The capacitor-preset combinations determine the oscillation frequency of the UJT. At Q0 through Q9 outputs of IC3, presets are set at different values to obtain different phase angles. SCR1

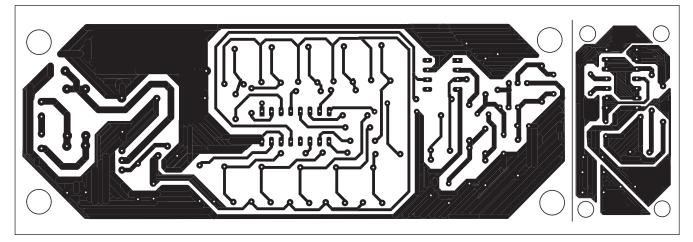


Fig. 4: Actual-size, single-side PCB for transmitter and receiver units of the lamp-brightness controller

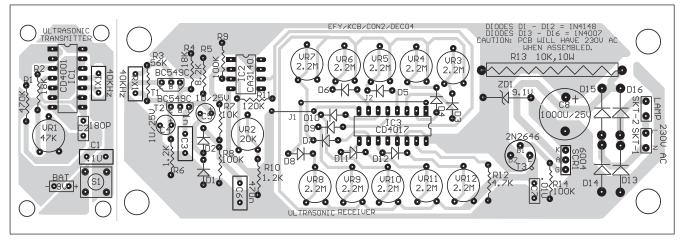


Fig. 5: Component layout for the PCB

directly drives the lamp.

After assembling the circuit, adjust the frequency of the transmitter to exactly 40 kHz. Orient the ultrasonic transducer transmitter towards the receiver transducer such that the receiver can directly receive the ultrasonic waves from the transmitter. Press switch S1 to switch on the transmitter for each operation of switch S1. The brightness level of lamp varies due to the phase control by the UJT. The combined actual-size, single-side PCB for the transmitter and receiver units of the lamp-brightness controller is shown in Fig. 4 and its component layout in Fig. 5. The two PCBs can be separated by cutting along the vertical line. \Box

MOVING MESSAGE OVER DOT-MATRIX DISPLAY

A. KANNABHIRAN

ontrolling electronic devices from a PC is a real fun. Here is a mov ing message display that makes use of the PC's parallel port. The message typed from the keyboard of the PC is displayed on the 5×7 dot-matrix display in moving format.

Moving message employing 5×7 (or 8×8) dot-matrix displays are used in many public places including railway stations and general stores for announcements. These can display any symbol of any language. In cheaper type of moving

message displays, the message is stored in ROM/EPROM and the same cannot be changed easily. The costlier ones do provide the facility for changing the message.

The dot-matrix display circuit presented here has the following advantages:

1. The message to be displayed forms part of the program, so we can change the message whenever required.

2. Up to sixteen 5×7 dot-matrix displays can be used.

3. The program can be easily modified

TABLE I Parallel-Port Pin Details

Pin number	Traditional use	Port name	Read/Write	Port address	Port bit
2-4	Data out	Data port	W	Base	D0-D2
5-9	Data out	—	W	Base	D3-D7
1	Strobe	Control port	R/W	Base+2	CO
14	Auto feed	_	R/W	Base+2	C1
16	Initialise	_	R/W	Base+2	C2
17	Select input	—	R/W	Base+2	C3
15	Error	Status port	R	Base+1	S3
13	Select	_	R	Base+1	S4
12	Paper end	_	R	Base+1	S5
10	ACK	_	R	Base+1	S6
11	Busy	—	R	Base+1	S7
18-25	Ground	_	_	_	_

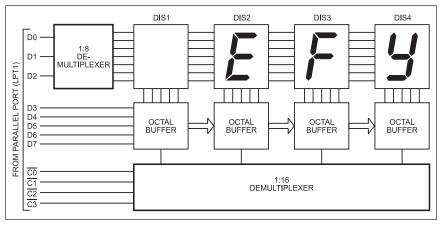


Fig. 1: Block diagram for moving message display using PC's parallel port

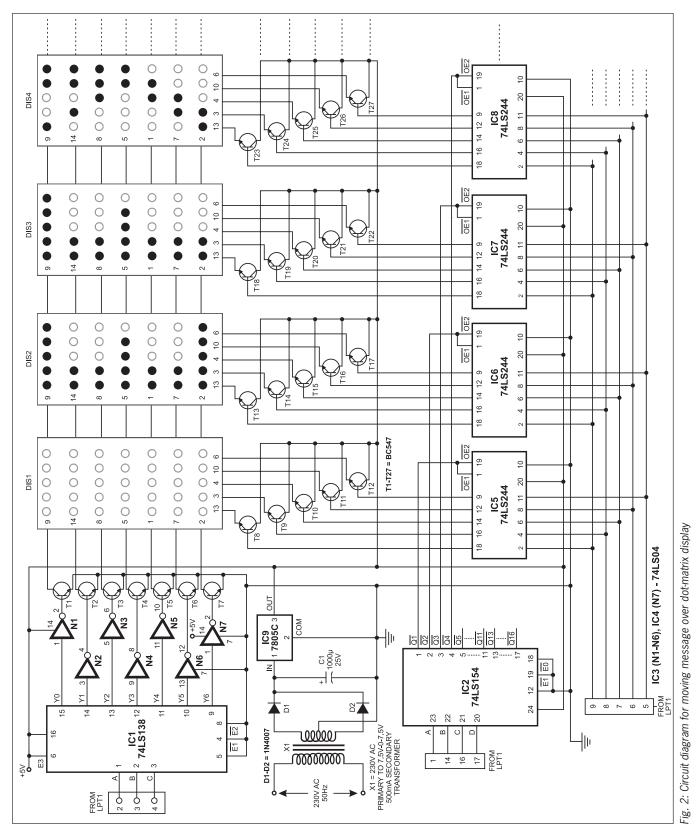
]	PARTS LIST
Semiconducto	ors	3:
IC1	-	74LS138 1-of-8
		demultiplexer
IC2	-	74LS154 1-of-16
		demultiplexer
IC3, IC4	-	74LS04 hex inverter
IC5-IC8	-	74LS244 octal buffer
IC9	-	7805 +5V regulator
T1-T27	-	BC548 npn transistor
D1, D2	-	1N4007 rectifier diode
Capacitors:		
Capacitors.		1000µF, 25V electrolytic
01	-	1000µr, 25V electrolytic
Miscellaneou	s:	
X1	-	230V AC to 7.5V-0-7.5V,
		500mA transformer
	-	25-pin 'D' connector

to display characters of other scripts.

4. The cost of the circuit will depend on the number of displays used in the circuit.

Here, the circuit is designed for English characters using four 5×7 dot-matrix displays. The message display speed can be varied by changing the display rate in the program.

PC's parallel port


The PC's parallel port (LPT port) is used to output the display code and control signals for the moving message display. The parallel port is terminated into a 25pin D-type female connector at the back of your PC. IBM PCs usually come with one or two LPT ports.

Each parallel port is actually made up of three ports, namely, data port, status port and control port.

Pins 2 through 9 form the 8-bit data port. This is purely a write-only port, which means it can be used only to output data.

Pins 1, 14, 16 and 17 form the control port. This port is read-/write-capable, which means it can be used both for outputing and inputing some data to/from the external hardware.

Pins 10 through 13 and pin 15 to-

gether form the status port. This is a read-only port, which means it can be used only to read data from the external hardware.

Table I shows pin details of the stand-

ard parallel port (SPP), including their traditional usage. The base address of the first parallel port (LPT1) is 378 (hex) or 888 (decimal). The data port of the parallel port can be accessed by its base

address. The status port can be accessed using base address+1, i.e. 0379 hex (or 889 decimal). The control port can be accessed using base address+2, i.e. 037A hex (or 890 decimal).

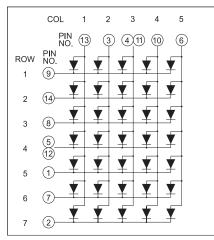


Fig. 3: Pin configuration of 5×7 dot-matrix display

Similar method can be followed for LPT2, whose base address is 0278 in hex. In the present application, we only need to output data. Since status port is a readonly port, the same is not used. Pins 18 through 25 are grounded.

The circuit

Fig. 1 shows the block diagram of the moving message display. The data to be output from the PC's parallel port (LPT1) is first processed by the program. Data lines D0 through D2 of the parallel port are used to enable the seven rows of the dot-matrix display using the 1:8 demultiplexer (IC1). Data lines D3 through D7 and control lines C0, C1, C2 and C3 are used (as output lines) to enable the columns of the dot-matrix display via the 1:16 demultiplexer (IC2).

Fig. 2 shows the circuit diagram of the moving message display using the PC's parallel port. The circuit comprises 1-of-8 demultiplexer 74LS138 (IC1), octal tristate buffers 74LS244 (IC5 through IC8), 1-of-16 demultiplexer 74LS154 (IC2), transistors and four 5×7 dot-matrix displays. Discrete light-emitting diodes (LEDs) can also be arranged in a matrix format to make an alphanumeric display, with each diode representing a pixel. However, it is advantageous to use a 5×7 matrix display which can be obtained in a single package such as FYM-2057IAX from Ningbo Foryard Opti-Electronics Co. Ltd (refer Fig. 3).

The AC mains is stepped-down by transformer X1 to deliver a secondary output of 7.5V-0-7.5V AC at 500 mA. The transformer output is rectified by a fullwave rectifier comprising diodes D1 and

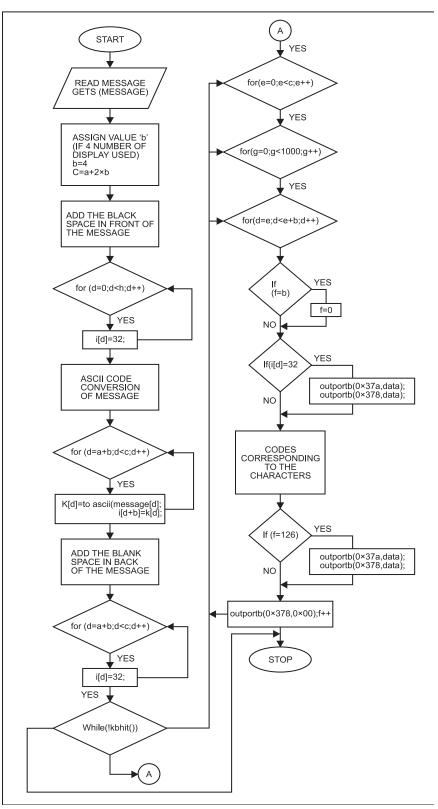


Fig. 4: Flow-chart of the program

D2, filtered by capacitor C1, then regulated by regulator 7805C (IC9) to provide regulated 5V power supply to the circuit.

1-of-8 demultiplexer 74LS138 (IC1) provides ground path to the cathodes of

all the LEDs of the dot-matrix display through inverters and transistors by using the time-division multiplexing technique. Pins 1 through 3 of IC1 are connected to pins 2 through 4 of LPT1. The outputs of

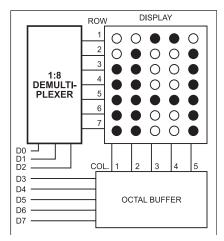


Fig. 5: Diagram of 'A' in 5×7 dot-matrix pattern

IC1 are inverted by NOT gates N1 through N7 and fed to transistors T1 through T7.

IC 74LS138 (IC1) has only eight active-low outputs. Enable pins E1 and E2 have been made permanently low, while enable pin E3 has been made permanently high. Any of the outputs of IC1 can be made low by inputing a 3-bit binary address. The low output of IC1 is made high by the inverter to forward bias the corresponding transistor (T1 through T7). This provides ground to the cathode of the respective LED of the dot-matrix display as shown in the schematic.

Pins 5 through 9 of LPT1 are connected to the non-inverting input pins of all the tristate buffers 74LS244 (IC5 through IC8). The input data of any buffer becomes available at its output when a low enable signal is provided by IC2. Demultiplexer IC 74LS154 (IC2) provides the enable signal to IC5 through IC8 using time-division multiplexing technique. There is provision for connecting twelve additional 74LS244 ICs to control another twelve 5×7 dot-matrix displays.

IC 74LS154 (IC2) has 16 active-low outputs. Its active-low enable pins E1 and E2 have been made permanently low. Any of the sixteen outputs of IC2 can be made low by inputing a 4-bit binary address.

Output pins 1 through 4 of IC2 are connected to enable pins 1 and 19 of buffers IC5 through IC8, respectively. The outputs of IC5 through IC8 are fed to the transistors connected to displays DIS1 through DIS4. The high output of buffer forward biases the connected transistor to provide + 5V supply to the anodes of the corresponding LEDs of the dot-matrix display.

The actual-size, single-side PCB for the moving message over dot-matrix dis-

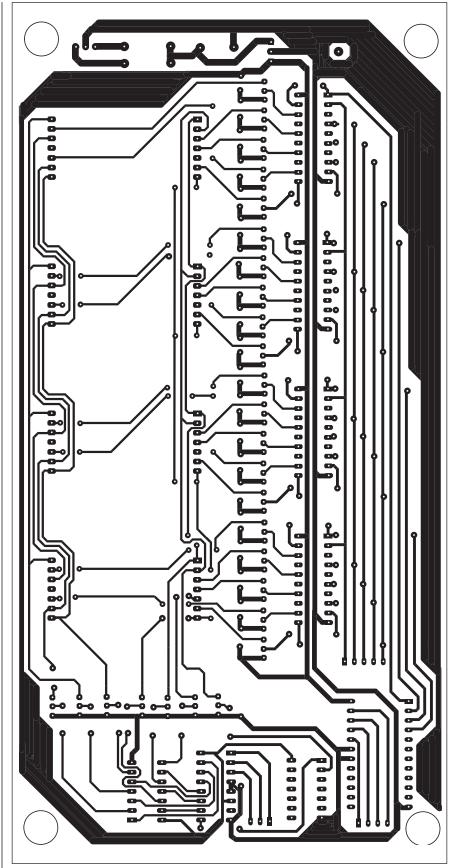


Fig. 6: Actual-size, single-side PCB for moving message over dot-matrix display

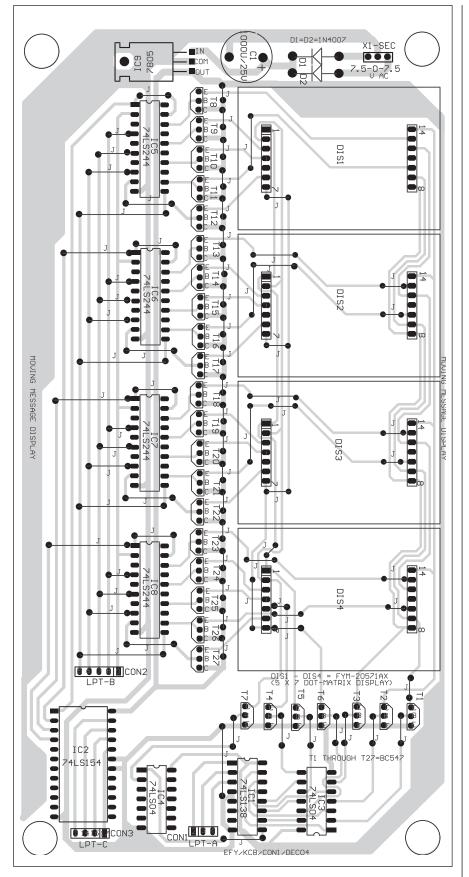


Fig. 7: Component layout for the PCB

TABLE II Hex Equivalent of the Data Bits for Display of Columns and Rows

Bits for display of lent							Equiva-	
column				dis	play	of	hex code	
					row			
D7	D6	D5	D4	D3	D2	D 1	D 0	
0	0	1	1	0	0	0	0	30
0	1	0	0	1	0	0	1	49
1	1	0	0	1	0	1	0	CA
1	1	0	0	1	0	1	1	CB
1	1	1	1	1	1	0	0	\mathbf{FC}
1	1	0	0	1	1	0	1	CD
1	1	0	0	1	1	1	0	CE

play is shown in Fig. 6 and its component layout in Fig. 7.

The software

The software program for the moving message display is written in 'C++' language. It works as per the flow-chart shown in Fig. 4. The message (data) entered from the keyboard of the PC gets stored into an array.

Variable 'b' in the program signifies the number of blank spaces to be added before and after the message. Its value is determined from the number of dot-matrix displays used in the circuit. Since we have used four displays, assign a value of '4' to variable 'b.' The program now adds four blank spaces before and after the message. In case you are using all the sixteen displays, assign a value of '16' to variable 'b'.

The stored data is converted into the equivalent ASCII code and stored in the new array. ASCII code conversion is performed by including the header file '<ctype.h>' in the software.

The length of the message (including characters, numbers and blank spaces) is measured by string function, which is performed by the header file '<string. h>.' The message is converted into hex code and sent to the parallel port for 5x7 dot-matrix display. At the parallel port, data output is available in time-division multiplexing format. The speed of operation depends on the value of 'g' used in the program.

Suppose you want to display the message "Electronics For You." The length of this message is calculated by the string function as '19.' Since we've used four displays, four blank spaces get added before and after the message. Thus the length of the message now increases to 19+8=27.

The 8-bit data available (through data lines D0 through D7) from the parallel port's address 0×378 (base address+0) is used to display a single letter. Three bits (D0 through D2) from base address+0 are given to demultiplexer IC1 and the remaining five bits (D3 through D7) are given to the buffers (IC5 through IC8). Data flow from the buffers is controlled by demultiplexer IC2. Rows and columns of all the four dot-matrix displays are controlled by D0 through D2 and D3 through D7 with the help of control pins C0, C1, C2 and C3. The four control bits (C0 through C3) from base address+2 of the parallel port are given to IC2 to provide active-low output to enable the buffers.

Designing a character or symbol

Suppose you want to display letter 'A.' Draw 'A' on the 5×7 dot-matrix display as shown in Fig. 5. Now, to convert the letter 'A' into column bits (D3 to D7) for each row, the 'off' LEDs represent '0' and dark or lighted LEDs represent '1.' Thus bits D3 through D7 are converted into their binary and hex formats in Table II for each of the rows. For activation of rows, we use bits D0 through D2 and they simply change sequentially to output binary '000' through '110' (refer Table II). Hex equivalent of the eight data bits for each row is shown in the last column of Table II.

The rows of the display are selected through demultiplexer IC1 by using the three bits D0 through D2 from the parallel port and the columns of the display are selected by the remaining five bits D3 through D7 from the parallel port. These eight bits are converted into the equivalent hexadecimal value and sent through the parallel port by the program. Similarly, you can convert any letter of a message into its equivalent hex output for a blank space. Digits D3 through D7 of Table II will be all zeros for all rows, while activating bits D0 through D2 will change sequentially from '000' through '110.'

EFY note. The source code and other relevant files of this project have been included in CD. $\hfill \Box$

SECTION B : CIRCUIT IDEAS

INTRUDER ALARM

PRAVEEN KUMAR

his circuit, fitted to the door of your house, sounds an alarm if anyone pushes the door. This way it alarms you against thieves or intruders. The cira laser diode is powered by a 9V battery. When switch S1 in the transmitter section is closed, the laser diode glows. Closing switch S2 provides power supand transistor T1 stops conducting since the LDR offers a high resistance in the absence of light. Transistor T2 receives base current and starts conducting. The

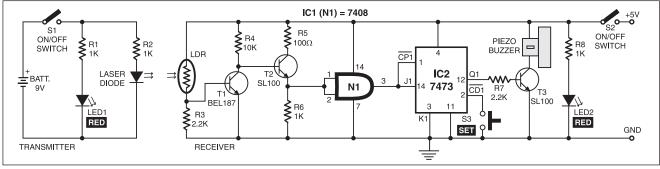


Fig. 1: Circuit diagram of intruder alarm

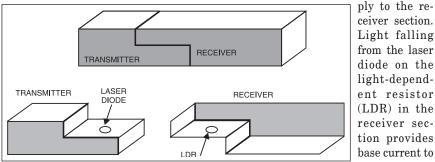


Fig. 2: Transmitter and receiver cabinets with holes for laser LED and LDR, respectively

cuit (refer Fig. 1) comprises transmitter and receiver sections. The transmitter is fitted onto the inside of the doorframe and the receiver is fitted to the door panel.

The transmitter section comprising

ent resistor (LDR) in the receiver section provides base current to transistor T1 and it starts conducting.

This grounds the base of transistor T2. so it doesn't conduct and the alarm remains off.

When somebody pushes the door, light incident on the LDR is interrupted pulse from the emitter of transistor T2 is connected to the inputs of AND gate N1 (IC1). The high ouput of AND gate is connected to a JK flip-flop (IC2) that works as a latch. As a result, output pin 12 (Q1) of IC2 goes high to cause conduction of transistor T3 and consequent sounding of the alarm. The alarm can be turned off by switch S2.

Arrange the laser diode and the LDR such that when the circuit is 'on' and the door is closed, light from the laser diode falls on the LDR to keep the alarm off. In order to make sure that ambient light is not incident on the LDR, make the arrangement as shown in Fig. 2.

EFY note. While testing at EFY Lab, a laser torch in place of the transmitter was used.

LED-BASED MESSAGE DISPLAY

S.C. DWIVEDI

his LED-based message display is built around readily availble, lowcost components. It is easy to fab-

ricate and makes use of 3mm red LEDs. A total of 172 LEDs have been arranged to display the message "HAPPY NEW YEAR 2004."

The arrangement of LED1 through LED11 is used to display 'H' as shown

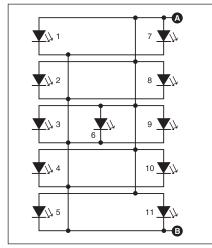
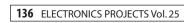
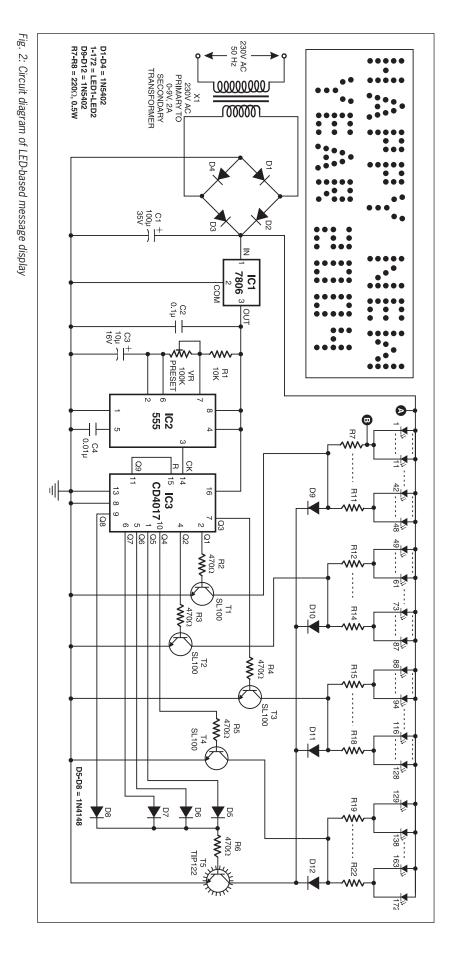


Fig. 1: LED arrangement for word 'H'

in Fig. 1. The anodes of LED1 through LED11 are connected to point A and the cathodes of these LEDs are connected to point B. Similarly, letter 'A' is built using LED12 through LED21. All the anodes of LED12 through LED21 are connected to point A, while the cathodes of these LEDs are connected to resistor R8 (not shown in the circuit diagram). Other letters/words can also be easily arranged to make the required sentence.


The power supply for the message display circuit (Fig. 2) comprises a 0-9V, 2A step-down transformer (X1), bridge rectifier comprising diodes D1 through D4, and a filter capacitor (C1). IC 7806 (IC1) provides regulated 6V DC to the display circuit comprising timer 555 (IC2) and decade counter CD4017 (IC3). The astable multivibrator built around IC2 produces 1Hz clock at its output pin 3. This output is connected to clock pin (pin 14) of the decade counter.


The decade counter can count up to 10. The output of IC3 advances by one count every second (depending on the time period of astable multivibrator IC2).

When Q1 output of IC3 goes high, transistor T1 conducts and the current flows through LED1 through LED48 via resistors R7 through R11. Now the word 'HAPPY' built around LED1 through LED48 is displayed on the LED arrangement board.

Next, when Q2 output of IC3 goes high, transistor T2 conducts and the current flows through LED49 through LED87 via resistors R12 through R14. Now the word 'NEW' is displayed on the LED arrangement board.

Again, when Q3 output goes high, transistor T3 conducts and the current

flows through LED88 through LED128 via resistors R15 through R18. Now the word 'YEAR' is displayed on the LED arrangement board.

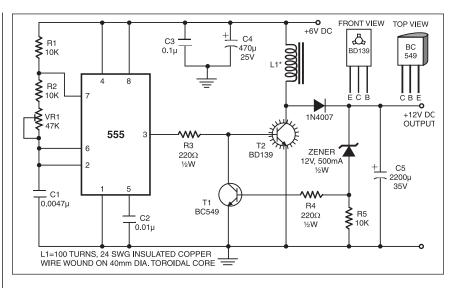
Similarly, when Q4 output goes high, transistor T4 conducts and the current flows through LED129 through LED172 via resistors R19 through R22. Now digits '2004' are displayed on the LED arrangement board. During the entire period when Q5, Q6, Q7, or Q8 output go high, transistor T5 conducts and the current flows through all the LEDs via diodes D9 through D12 and resistors R7 through R22. Now the complete message "HAPPY NEW YEAR 2004" is displayed on the LED arrangement for four seconds.

Thus, the display board displays

'HAPPY,' 'NEW,' YEAR' and '2004' one after another for one second each. After that, the message "HAPPY NEW YEAR 2004" is displayed for 4 seconds (because Q5 through Q8 are connected to resistor R6 via diodes D5 through D8).

At the next clock input output Q9 goes high, and IC3 is reset and the display is turned off for one second. Thereafter the cycle repeats.

DC-TO-DC CONVERTER


PRINCE PHILLIPS

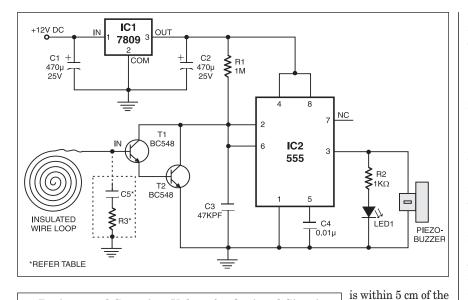
Fere's a low-cost circuit to convert 6V DC into 12V DC. It uses no transformer and is easy to construct with few components.

The circuit is built around IC 555, which generates the required frequency of around 2 to 10 kHz to drive power transistor BD139 (T2). The output frequency of the IC can be adjusted by a 47k potmeter (VR1) and given to the base of transistor T2 via resistor R3. Transistor T2 is mounted on an aluminium heat-sink. Inductor L1 and capacitor C5 (2200 μ F, 35V) are energy storage components. The 12V zener diode regulates the voltage across the output of the circuit.

The inductor comprises 100 turns of 24SWG enamelled copper wire wound on a 40mm dia. toroidal ferrite core. The more the turns on the core, the higher the current delivering capability of the circuit to the load at the output.

The output current is controlled by transistor BC549 (T1) with the help of

resistors R4 and R5. The output voltage is controlled by the zener diode and smoothed by capacitor C5.


You can obtain regulated 12V DC, 120 mA across the output of this circuit. At higher loads (below 100 ohms), the circuit might not perform well and deliver as much current. Use a large capacitor (C5) and inductor for higher voltages and higher currents, respectively. Different output voltages can be obtained by using zener diodes of other ratings.

VERSATILE PROXIMITY DETECTOR WITH AUTO RESET

KAUSHIK HAZARIKA

lectrochemical processes taking place in our body generate complex signals (hum) that are continuously being passed along the nerve fibres throughout the body. Any physical activity such as muscle movement increases hum.

Here's a circuit that operates when it detects hum generated by the human body

Resistor and Capacitor Values for Optional Circuit				
R3 (kilo- ohms)	C5 (pF)	Approx. triggering distance (mm)	Approx. follow-up distance (mm)	Approx. loop wire length (mm)
22 220 220	220 82 10	3 10 5	30 50 20	68 68 68

in proximity. Its versatility lies in the fact that you don't need to touch the metal plates for detection. Just the presence of your hand/body within 1 cm of the sensing loop triggers the circuit. The activation of the circuit is indicated by the glowing of an LED and an audible beep. The circuit continues to glow and beep until the hand DC to the circuit.

When power is turned on, capacitor C3 (47 kpF) charges through resistor R1 (1 mega-ohm). Output pin 3 of IC2 remains high as long as the voltage at its pin 2 is below 2/3Vcc; the buzzer beeps for this period. Beyond that voltage, the output resets (goes low).

loop. Beyond 5 cm,

it resets automati-

simplifies the cir-

cuitry otherwise

needed to achieve

this. Regulator 7809

(IC1) supplies 9V

Here IC2 (555)

cally.

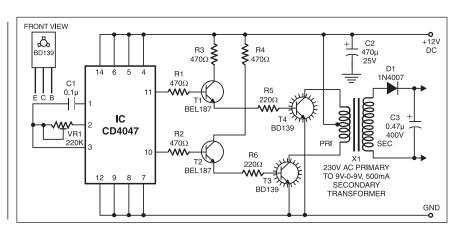
Transistors T1 and T2 (each BC548) form a Darlington pair. As long as T1 and T2 remain in cut-off condition, capacitor C3 retains the charge and the buzzer is off. When you take your hand within 1 cm of the loop wire, T1 conducts due to the noise picked up by its base. So capacitor C3 gets a discharge path, and the voltage at pin 2 of IC2 going below 1/3Vcc sets output pin 3 high. As a result, the buzzer sounds.

The beep continues until C3 charges to 2/3Vcc due to gradual withdrawal of the hand from vicinity of the loop wire. The series combination of capacitor C5 and resistor R3 within dotted lines is optional and reduces hum at the base of T1. The values of C5 and R3 to be used for varying the sensitivity of the circuit are given in the table.

For calibration, wire the circuit and use a 7cm hook-up wire at the base of T1. When you place your hand over the wire insulation, the buzzer should beep. If it doesn't, check connections. Now connect the loop wire. If beep continues even when there is no person within 20 cm, use a suitable combination of C5 and R3 from the table to reduce the circuit sensitivity.

The suggested PCB size for the circuit (excluding power supply) is 4 cm×3 cm. Solder the loop wire directly. A small hook-up wire was used in the prototype.

Do not remove insulation of the wire. Keep the circuit away from mains wiring and large metal objects.


WINDOW CHARGER

PRADEEP G.

Reep away intruders with this compact electrified window charger. The charger produces non-lethal shocks that are strong enough to threaten intruders.

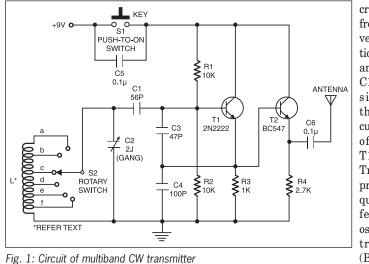
The circuit uses IC CD4047 as a freerunning astable multivibrator. Capacitor C1 and preset VR1 are timing components. The pulse repetition rate is determined by the value of 4.4C1×VR1. The frequency can be varied with the help of preset VR1.

The IC generates complementary squarewave signals at pins 10 and 11. Transistors T1 and T2 serve as drivers

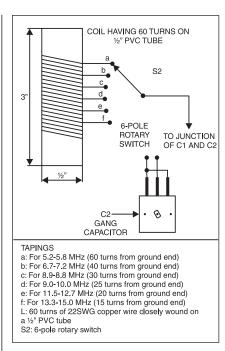
for the following push-pull amplfier stage. A high-voltage generator, realised using step-up transformer X1 and medium-

power transistors T3 and T4, follows the astable multivibrator. The stepdown transformer is used for reverse function (step-up) and its output is rectified by diode D1, filtered by capacitor C3 and then given to window (made of metal frame).

MULTIBAND CW TRANSMITTER


radio frequency oscillator is at the heart of all radio transmitters and receivers. It generates high-frequency oscillations, which are known as carrier waves. Here's a continuous-wave (CW) transmitter for transmitting Morse code signals in the shortwave band (see Fig. 1). It is basically a variable frequency oscillator (VFO) whose frequency can be varied from 5.2 MHz to 15 MHz. The signal can be received in the shortwave band by any radio receiver. The circuit works off a 9V

REJIMON G. VU2RGQ

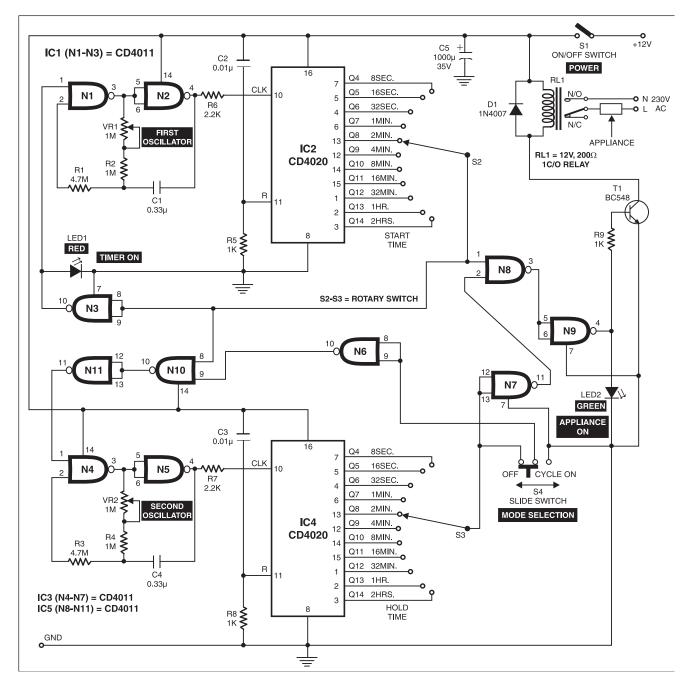

battery.

Connect the Morse key (S1) across capacitor C5 as shown in the figure. Attach a telescopic antenna (capable of transmitting over a short distance) at the output terminal. The coil and gang capacitor C2 form the tank circuit. The coil (L) has a total of 60 turns. Winding details are given in Fig. 2. Tappings on the coil allow selection of the required band. The frequency can be varied using C2 (main tuning).

On reducing turns of the coil (using selector switch S2), the oscillator's

frequency increases because frequency is inversely proportional to inductance. Capacitor C1 couples the signal from the tank circuit to the base of transistor T1 (2N2222). Transistor T1 provides the required positive feedback for oscillation and transistor T2 (BC547) func-

Fig. 2: Details of the inductor tions as the emitter follower. The output is taken from the emitter of T2.


For stable oscillations, use a polystyrene capacitor as C1. All other capacitors may be ceramic disk type. Enclose the circuit in a metal box for better shielding.

PROGRAMMABLE TIMER FOR APPLIANCES

MITESH P. PARIKH

This programmable timer is useful for domestic, commercial as well as industrial applications. It automatically turns the appliance on/off after a preset time. The time period can be varied from 8 seconds to 2 hours with the help of rotary switches S2 and S3. The circuit works in two modes: off mode and cyclic mode. Slide switch S4 is used for mode selection.

In the off mode, the appliance turns on after a preset time (set by rotary switch

S2), remains on for another preset time (set by rotary switch S3) and then turns off. In the cyclic mode, this process repeats again and again.

The circuit is built around three quad two-input NAND gate ICs CD4011 (IC1, IC3 and IC5), two 14-bit binary ripple counters CD4020 (IC2 and IC4) and a relay driver transistor (T1). It works off a 12V DC, 500mA power supply. You can also power the circuit from mains by using a 12V DC, 500mA adaptor in place of the 12V DC power supply.

Let's assume that you want an appliance to turn on after two minutes and keep it on for another two minutes. For this set the rotary switches S2 and S3 to positions as shown in the figure.

Initially, when power switch S1 is closed, a small charging current pulse through capacitors C2 and C3 resets both the counters (IC2 and IC4) to make all their outputs (Q4 through Q14) low. The high output at pin 10 of NAND gate N3 starts the first oscillator comprising NAND gates N1 and N2, which provides clock pulses to IC2 at the rate of one pulse per second. The glowing of red LED (LED1) indicates that this oscillator is working well and timer is 'on.' During the first 2 minutes, relay RL1 remains de-energised by the control circuit formed by NAND gates N7, N8 and N9 and LED2 is off, which indicates that the appliance is in 'off' codition. The second oscillator built around NAND gates N4 and N5 (which provides clock pulses to IC4 at the rate of one pulse per second) is inhibited by the timing control circuit formed by NAND gates N6, N10 and N11.

After 128 pulses (approximately two minutes), the Q8 output of IC2 goes high to perform the following three functions:

1. Make the output at pin 10 of NAND gate N3 low via rotary switch S2, which

inhibits the first oscillator

2. Energise relay RL1 via NAND gates N8 and N9 and relay driver transistor T1 to make appliance 'on'

3. Make the output at pin 10 of NAND gate N10 low, which is connected to the inputs of NAND gate N11 to make its output at pin 11 high. This high output is further connected to the input (pin 1) of NAND gate N4.

Now the second oscillator starts oscillating and provides clock pulses to pin 10 of IC4 at the rate of one pulse per second.

Now, after 128 pulses (approximately two minutes), the Q8 output of IC4 goes

Readers' comments

1. What should be the values of VR1, R2 and C1 for making the timer for 12-hour and 24-hour operation in the circuit? Variable resistors are not available above the mega-ohm value. If non-polar type C1 of a higher value is not available, what type of capacitor can be used and how it should be connected?

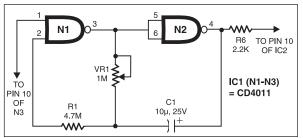
2. Can this timer be used for 15A to 20A loads, and if any spark develops, is there any method to eliminate spark?

Balakrishnan K. Nair Mumbai

The author, Mitesh P. Parikh, replies: **1.** I am thankful to Mr Nair for showing interest in my circuit. Here are the replies to his queries:

1. For 12-hour and 24-hour operation, the values of various components are VR1=528 kilo-ohms (using a 1-mega-ohm high. This de-energises the relay via NAND gates N7 and N9 and relay driver transistor T1, provided the mode-selection slide switch S4 is towards off position. The high Q8 output will inhibit the second oscillator via NAND gates N6, N10 and N11 to stop clock pulses to pin 10 of IC4. Thus the relay is energised only once (for 2 minutes) since clock pulses to both IC2 and IC4 are stopped altogether and their outputs get latched.

In case the mode-selector switch S4 is towards 'cycle on' side, clock pulses to IC4 would continue and the relay is alternately energised and de-energised for two


preset), R2=0 ohm (R2 unused) and C1=10µF, 16V electrolytic capacitor with positive terminal connected to pin 4 of N2 of the first oscillator and negative terminal connected to the junction of resistors R1 and VR1 as shown in the figure.

Similarly, this can be done for the second oscillator also. Using these values, at pins 2 (Q13) and 3 (Q14) of IC4 (IC CD4020), we will get a delay of 12 hours and 24 hours, respectively.

2. As mentioned in the article, the timer can be used for 15A to 20A loads. The relay used in the timer should be of a higher current capacity, such as an industrial relay. Relays that can carry loads with heavy currents (such as 15A) are available minutes each. This continues until the circuit is switched off and started again, or the mode-selector switch is slided towards 'cycle off' side.

Rotary switch S2 is used for start time selection and rotary switch S3 is used for hold time selection. The start and hold time can be increased up to 24 hours by changing the values of R and C components of the oscillator circuit of first and second oscillator.

For heavier load, use a relay of a higher current rating. The circuit can be made on a multipurpose PCB and put in a plastic or metal cabinet with proper ventilation.

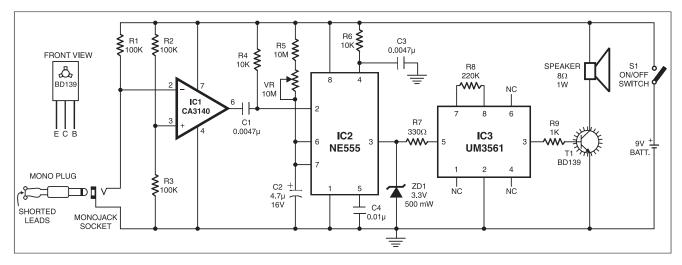
resistors R1 and VR1 Modified circuit of programmable timer for appliances

in the market. These are enclosed in a black plastic cover, with only relay terminals being out, which can be mounted on the PCB.

For elimination of sparking, you should use a good-quality relay. Else, you can use a silicon-controlled rectifier (SCR) for switching heavy loads. In this case, there is no spark, but an additional circuit is required between the timer and the SCR for triggering and turning off the SCR at the correct time.

ANTI-BAG-SNATCHING ALARM

D. MOHAN KUMAR


Here is a simple alarm circuit to thwart snatching of your valuables while travelling. The circuit kept in your bag or suitcase sounds a loud alarm, simulating a police horn, if someone attempts to snatch your bag or suitcase. This will draw the attention of other passengers and the burglar can be caught red handed.

In the standby mode, the circuit is locked by a plug and socket arrangement (a mono plug with shorted leads plugged into the mono-jack socket of the unit). When the burglar tries to snatch the bag, the plug detaches from the unit's socket to activate the alarm.

The circuit is designed around op-amp IC CA3140 (IC1), which is configured as a comparator. The non-inverting input (pin 3) of IC1 is kept at half the supply voltage (around 4.5V) by the potential divider comprising resistors R2 and R3 of 100 kilo-ohms each. The inverting input (pin 2) of IC1 is kept low through the shorted plug at the

socket. As a result, the voltage at the non-inverting input is higher than at the inverting input and the output of IC1 is high.

The output from pin 6 of IC1 is fed to trigger pin 2 of IC NE555 (IC2) via coupling capacitor C1 (0.0047 μ F). IC2 is configured as a monostable. Its trigger pin 2 is held high by resistor R4 (10 kilo-ohms). Normally, the output of IC2 remains low and the alarm is off. Resistor R6, along with capacitor C3 connected to reset pin 4 of IC2, prevents any false

triggering. Resistor R5 (10 mega-ohms), preset VR (10 mega-ohms) and capacitor C2 (4.7 μ F, 16V) are timing components. With these values, the output at pin 3 of IC2 is about one minute, which can be increased by increasing either the value of capacitor C2 or preset VR.

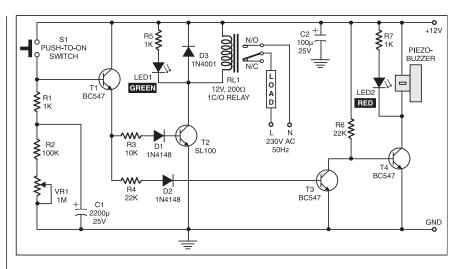
When there is an attempt at snatching, the plug connected to the circuit detaches. At that moment, the voltage at the inverting input of IC1 exceeds the voltage at the non-inverting input and subsequently its output goes low. This sends a low pulse to trigger pin 2 of IC2 to make its output pin 3 high. Consequently, the alarm circuit built around IC UM3561 (IC3) gets the supply voltage at its pin 5.

IC UM3561 is a complex ROM with an inbuilt oscillator. Resistor R8 forms the oscillator component. Its output is fed to the base of single-stage transistor amplifier BD139 (T1) through resistor R9 (1 kilo-ohm).

The alarm tone generated from IC3 is amplified by transistor T1. A loudspeaker is connected to the collector of T1 to produce the alarm. The alarm can be put off if the plug is inserted into the socket again. Transistor T1 requires a heat-sink. Resistor R7 (330 ohms) limits the current to IC3 and zener diode ZD1 limits the supply voltage to IC3 to a safe level of 3.3 volts. Resistor R9 limits the current to the base of T1.

The circuit can be easily constructed on a vero board or general-purpose PCB. Use a small case for housing the circuit and 9V battery. The speaker should be small so as to make the gadget handy. Connect a thin plastic wire to the plug and secure it in your hand or tie up somewhere else so that when the bag is pulled, the plug detaches from the socket easily.

OFF TIMER WITH ALARM


Effective transistorised timer that automatically switches off TV and other appliances after the set time. It works off a 12V DC, 300mA power supply.

Using preset VR1, you can set the time period from a few minutes up to half an hour. After connecting the power supply, momentarily press tactile switch S1. Transistors T1 and T2 conduct to energise relay RL1 and green LED (LED1) glows. The load/appliance connected via N/O contact of relay RL1 is switched on.

At the same time, transistor T3 conducts and transistor T4 stops conducting. So the buzzer doesn't sound and also red LED (LED2) doesn't glow.

When the 'off' time period is over, relay RL1 de-energises and the appliance

PRADEEP G.

connected via N/O contact of the relay is switched off. The buzzer sounds and LED2

glows to indicate that the set time period is over.

OVER-VOLTAGE PROTECTOR

P.V. VINOD KUMAR

This circuit protects your television as well as other electrical appliances from over-voltage. It uses operational amplifier μ A741 (IC1) as a comparator. The unregulated power supply is connected to resistor R3 and preset VR1 through resistor R2. Zener diode ZD1 provides reference voltage of 5.1V to the inverting input (pin 2) of IC1.

The non-inverting input (pin 3) of

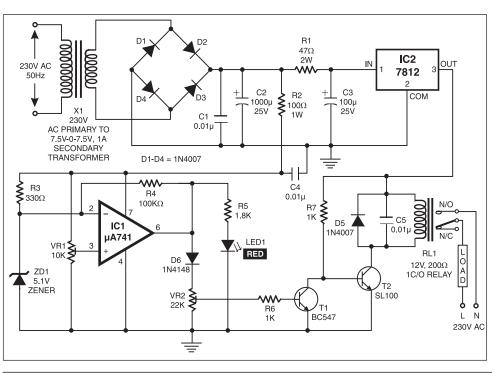
IC1 senses voltage fluctuation in the mains. Preset VR1 is adjusted such that for mains supply below 240V AC, the voltage at the non-inverting terminal of IC1 is less than 5.1V. Hence the output

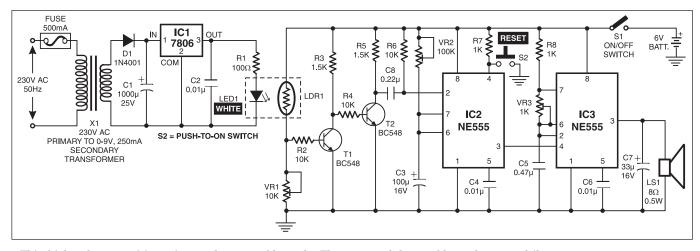
> of IC1 is zero and transistor T1 is in non-conducting state. At the same time transistor T2 conducts to energise relay RL1 to connect the mains to the load.

> When AC mains is beyond 240V, the voltage at pin 3 of IC1 goes above 5.1V. The high output of IC1 drives transistor T1 and transistor T2 stops conducting to de-energise the relay. Hence the appliance turns off.

Preset VR2 is used for proper biasing of transistor T1. The AC mains supply is stepped down by transformer X1 to deliver a secondary output of 7.5V-0-7.5V AC, 1A. The output of the transformer is rectified by a full-wave rectifier comprising diodes D1 through D4. Capacitors C1 and C2 act as filters to eliminate ripples. Regulator IC 7812 is used to provide regulated 12V supply.

FUSE-CUM-POWER FAILURE INDICATOR


V. GOPALAKRISHNAN


This fuse-cum-power failure indicator comprises an LED (LED1), light-dependent resistor (LDR1), inverter circuit and two timer circuits built around IC NE555. LDR1 and preset VR1 form a voltage divider at the input of the cascaded amplifier comprising two BC548 transistors (T1 and T2). The base of transistor T1 is connected to the junction of LDR1 and the preset through resistor R2. The base of transistor T2 is connected to the collector of T1. The trigger pin of timer IC NE555 (IC2), which is configured as a monostable, is connected to the collector of T2. The output of transistor T1 is inverted by transistor T2. The inverted output of T2 triggers the monostable circuit.

LED1 gets power supply from the AC mains through transformer X1. The secondary output of the transformer is rec-

tified and fed to regulator IC 7806 (IC1). The 6V regulated output drives LED1. As LDR1, enclosed in a cabinet, is kept illuminated by the light from LED1, the output of transistor T2 is normally high.

The transformer has a fuse on the input side of primary winding. When power supply goes off due to power cut or fuse blown off, no light falls on LDR1 and the output of transistor T2 goes low.

This high-to-low transition triggers the monostable (IC2) and its output pin 3 goes high for about 7 seconds. The output of the monostable is connected to reset pin 4 of IC3 (NE555), which is configured in

astable mode. The output of the astable circuit is connected to a loudspeaker. IC3, along with the loudspeaker, forms an alarm circuit. Triggering of the monostable activates the alarm circuit, indicating the power failure.

LDR1, cascaded amplifier, monostable and astable circuits get power supply from a 6V battery.

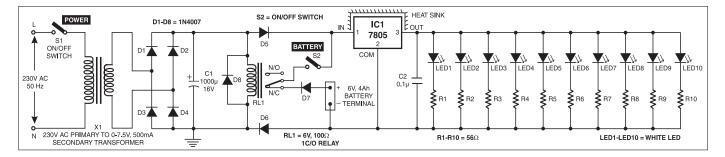
LED-BASED READING LAMP

This lamp circuit using ultra-bright white LEDs provides sufficient light for reading purposes while consuming approximately 3 watts of power. In the case of AC mains failure, the battery backup circuit instantly lights up the LEDs. When the power resumes, the battery supply is automatically disconnected and the lamp circuit again works off AC mains.

The power supply circuit consists of 0-7.5V, 500mA step-down transformer X1, rectifier diodes D1 through D4 and filter capacitor C1. Regulator IC 7805 (IC1) provides regulated 5V to LEDs, so there is no variation in the intensity of the lamp light even if the mains power supply fluctuates. A total of ten white LEDs (LED1 through

PRANAB KUMAR ROY

LED10) are connected in parrallel across the 5V power supply. Resistors R1 through R10 (each 56 ohms) are connected in series with the white LEDs to limit the current. To increase the intensity of the lamp light, you can add more LEDs in the same manner; a maximum of 15 LEDs can be used for the lamp.


When power switch S1 is closed, relay RL1 energises to disconnect the 6V, 4Ah battery (connected across N/C contact of relay RL1) from input to regulator IC1 if battery switch S2 is closed. When power switch S1 is open, relay RL1 de-energises and connects the battery to the input of IC1 via N/C contacts of the relay.

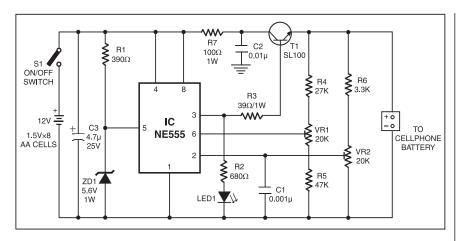
Diodes D5 and D6 are reverse-current protection diodes that don't allow the bat-

tery current to flow towards the power supply section. Diode D7 is for reverse polarity protection of the battery. Before connecting the battery, make sure that it is fully charged.

The circuit can be assembled on a general-purpose PCB. Arrange all white LEDs (LED1 through LED10) on the PCB. Now remove the bulb holder from the lamp and fix the PCB (where bulb holder was mounted) such that LED light falls on your book properly. No separate reflectors are required for LEDs as the LEDs have inbuilt lens reflectors. Use a heat-sink for IC1 as indicated in the figure.

Caution. Though you can read for hours without eye strain in this lamp light, don't directly look at white LEDs for long.

MOBILE CELLPHONE CHARGER


D. MOHAN KUMAR

harging of the cellphone battery is a big problem while travelling as power supply source is not generally accessible. If you keep your cellphone switched on continuously, its battery will go flat within five to six hours, making the cellphone useless. A fully charged battery becomes necessary especially when your distance from the nearest relay station increases. Here's a simple charger that replenishes the cellphone battery within two to three hours.

Basically, the charger is a current-lim-

circuit also monitors the voltage level of the battery. It automatically cuts off the charging process when its output terminal voltage increases above the predetermined voltage level.

Timer IC NE555 is used to charge and monitor the voltage level in the battery. Control voltage pin 5 of IC1 is provided with a reference voltage of 5.6V by zener increases the voltage at pin 2 of IC1 above the trigger point threshold. This switches off the flip-flop and the output goes low to terminate the charging process. Threshold pin 6 of IC1 is referenced

ited voltage source. Generally, cellphone battery packs require 3.6-6V DC and 180-200mA current for charging. These usually contain three NiCd cells, each having 1.2V rating. Current of 100mA is sufficient for charging the cellphone battery at a slow rate. A 12V battery containing eight pen cells gives sufficient current (1.8A) to charge the battery connected across the output terminals. The

Readers' comments

The circuit is not working. I tried by changing the values of 3.3-kilo-ohm resistor R6 to 33 kilo-ohms and some other components but to no avail. In this regard, please clarify:

1. Whether the output of the circuit is to be connected to the mobile cell-phone charging socket or directly to the battery after taking it out from the cell phone.

2. Can we use a 6V supply using 1.5V

diode ZD1. Threshold pin 6 is supplied with a voltage set by VR1 and trigger pin 2 is supplied with a voltage set by VR2.

When the discharged cellphone battery is connected to the circuit, the voltage given to trigger pin 2 of IC1 is below 1/3Vcc and hence the flip-flop in the IC is switched on to take output pin 3 high. When the battery is fully charged, the output terminal voltage

AAA cells? If yes, what changes are to be made?

The author, D. Mohan Kumar, replies: I thank Mr Diwakar for showing interest in my circuit. I have designed the circuit for use during long journeys. My prototype is performing well and the circuit was also

LED Status for Different Charging Conditions

Load across the output	Output frequency (at pin 3)	LED1
No battery connected	$765 \mathrm{kHz}$	On
Charging battery	4.5 Hz	Blinks
Fully charged battery	0	Off

at 2/3Vcc set by VR1. Transistor T1 is used to enhance the charging current. Value of R3 is critical in providing the required current for charging. With the given value of 39-ohm the charging current is around 180 mA.

The circuit can be constructed on a small general-purpose PCB. For calibration of cut-off voltage level, use a variable DC power source. Connect the output terminals of the circuit to the variable power supply set at 7V. Adjust VR1 in the middle position and slowly adjust VR2 until LED1 goes off, indicating low output. LED1 should turn on when the voltage of the variable power supply reduces below 5V. Enclose the circuit in a small plastic case and use suitable connector for connecting to the cellphone battery.

Note. At EFY lab, the circuit was tested with a Motorola make cellphone battery rated at 3.6V, 320 mAH. In place of 5.6V zener, a 3.3V zener diode was used. The charging current measured was about 200 mA.The status of LED1 is shown in the table.

found to be working satisfactorily at the EFY lab. It requires no modification if a 12V power supply is used.

However, while checking the circuit, Mr Diwakar may note that the performance of the circuit depends on the voltage settings at pins 2 and 6 of IC 555 using VR2 and VR1. Resistor R6 and VR2 form a potential divider to give a voltage below 1/3Vcc at pin 2 to switch on the IC. Resistors R4 and R5 and VR1 provide a

Y. Diwakar Principal, ITI Medchal

reference voltage of 2/3Vcc at pin 6. The voltage at pins 2 and 6 is to be adjusted to around 3.8V and 7.5V, respectively, after connecting a variable power supply to the output terminals.

The charging current is available from the emitter of T1 when the output of IC1 is high. T1 gets bias from the output of IC1 through R3. If the output of IC is correct, change the value of R3 to give proper bias to T1.

The circuit is designed to provide sufficient voltage and current to charge a cell phone two or three times during the journey. That is why a 12V power source with 1.6A current is used in the circuit as power source. Check the outputs of IC1 and T1 and measure the voltages at pins 2 and 6 after proper adjustments of VR1 and VR2. The circuit will work if all the connections and components are correct.

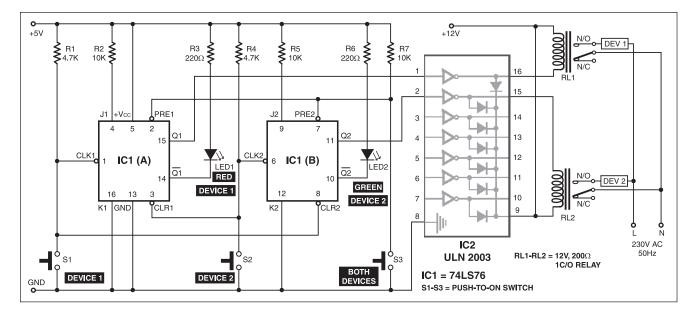
Here are my replies to the specific queries of Mr Diwakar:

1. The output can be directly connected to the cell phone socket using a suitable connector. It is current-regulated. The batteries can also be charged separately (after taking these out from the cell phone) if a suitable holder is available.

2. The circuit is designed to give an

output voltage of 3V to 6V to charge different makes of cell phone batteries. Most cellphone batteries require 3.6V to 6V for charging. Each Ni-Cd cell (1.2V) requires 1V extra for proper charging. So if a power source of 6V is used for the circuit, it is just sufficient for charging since the circuit and also the LED consume some power. An AC adaptor providing 6V and 500mA current can be used as the power source for the circuit if the cell-phone battery is of 3.6V. For using a 6V supply, suitable values of ZD1, R1 and R3 need to be used. Rechargeable batteries capable of holding more than 1A current can also be used as the power source.

SMART FOOT SWITCH


uch jobs as jewel cutting and polishing require the workers to switch on/off two electrical appliances one after another repeatedly for two different services on the same workpiece. This is cumbersome as they need to fully concentrate on delicate handwork on precious jewels. Switching in such situations cannot be done by hand. and doing it by foot using ordinary switches is too tedious. This is mainly because of the difficulty in sensing and controlling the switch position by foot. Ordinary pushbutton switches make or break a contact momentarily, and they cannot hold the keypress status. You

JAYAN A.R.

need a bistable multivibrator with two independent trigger inputs to solve this problem.

Here's a smart foot switch based on dual negative-edge triggered master slave JK flip-flop IC 74LS76 (IC1). J1 and J2 inputs are conneted to 5V through resistors R2 and R5 (each 10k), respectively. K1 and K2 inputs are grounded. Preset pins 2 and 7 are shorted and connected to 5V via resistor R7 (10k). Push-to-on switch S3 connected to the preset inputs is also grounded. Clock and clear inputs of the two flip-flops are cross-connected, i.e. CLK1 (pin 1) is conneted to CLR2 (pin 8) and CLR1 (pin 3) is connected to CLK2 (pin 6). Clock input pins 1 and 6 are pulled up high through resistors R1 and R4 (each 4.7k), respectively.

Push-to-on switches S1 and S2 are connected between clock and ground of the flip-flops. Switch S1 activates device 1, while switch S2 activates device 2. Switch S3 activates both device 1 and device 2 simultaneously. Device status is indicated by LED1 and LED2. Glowing of LED1 and LED2 indicates that device 1 and device 2, respectively, are in on condition. The LEDs are connected from +5V to Q1 (pin 14) and Q2 (pin 10) of IC1 through resistors R3 and R6, respectively.

Initially when the power supply is switched on, Q1 and Q2 outputs of the JK flip-flops are at low level (logic 0). When switch S1 is pressed for the first time, the high level (logic 1) present at J1 input is transferred to Q1 output on the trailing edge of clock (CLK1). The high level (logic 1) at Q1 activates relay RL1 through pin 16 of IC ULN2003 (IC2), turning on device 1 via its normally-opened (N/O) contacts. Clock CLK1 of flip-flop IC1(A) is also connected to clear input CLR2 of flip-flop IC1(B) so as to clear it asynchronously. Switch debounces don't affect the circuit as the same J1 state is being transferred to Q1 output on succeeding trailing edges. At the same time, device 2 is switched off.

When switch S2 is pressed, flip-flop IC1(A) gets cleared via CLR1 and the high state of J2 input of flip-flop IC1(B) is transferred to its Q2 output on the trailing edge of clock (CLK2). This high level (logic1) activates relay RL2 through pin 15 of IC2, turning on device 2 via its N/O contacts. At the same time, device 1 is switched off.

Now if you want to turn on both the

devices simultaniously, press switch S3 momentarily. Switch S3 provides ground to preset inputs PRE1 and PRE2 of flipflops IC1(A) and IC1(B), making their Q1 and Q2 outputs high, which energises both the relays turning on the two devices. LEDs glow to indicate that both the devices are 'on.'

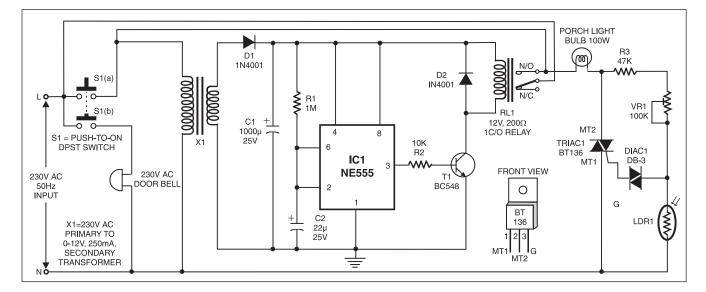
Place all the three switches (S1 through S3) where you can easily press them by foot when required. The LEDs can also be mounted at a convenient location to know whether the devices are turned on.

DOORBELL-CONTROLLED PORCHLIGHT

T.A. BABU

This add-on circuit automatically turns on your porchlight when your doorbell rings, so you can see the person ringing the doorbell at the doorstep. This also helps to guard against burglars, who usually press the doorbell switch to confirm that there is no one at home. By turning on the porchlight, the circuit will trick them into believing that someone is inside the home.

You can easily connect the circuit to your doorbell. The light remains on for around 20 seconds and then turns off. This duration is enough for you to find your way in the dark to open the door. However, duration can be varied by changing the RC components (R1 and C2).


When you momentarily press pushto-on DPST switch (S1), the AC mains is supplied to:

1. The doorbell via S1(b) and it rings.

2. Stepdown transformer X1 via S1(a) and it delivers 12V AC at its secondary. The secondary output is rectified by diode D1 and filtered by capacitor C1 to provide the required

DC. The DC voltage triggers timer 555 (IC1) and its output at pin 3 goes high for the preset time. Simultaneosly, the relay energises and AC mains flows via its N/O contacts to switch on the porchlight bulb.

Triac 1 is wired as an automatic light controller to switch on the porchlight at night and switch it off during day. The conduction angle of triac 1 depends on the bias provided to the gate of the triac through diac 1, which, in turn, is controlled by preset VR1 and the light falling on LDR1.

AC MAINS VOLTAGE INDICATOR

P. VENKATA RATNAM

Here's a simple AC mains voltage indicator that uses three LEDs to indicate low, normal and high levels of AC mains voltage. The 5mm red LEDs are connected between the collectors of transistors T1, T2 and T3 and resistors R2, R4 and R6, respectively. Presets VR1, VR2 and VR3 are used to adjust the base voltages of transistors T1, T2 and T3, respectively.

The AC mains supply is stepped down by transformer X1 to deliver a secondary output of 18V AC, 250 mA. The secondary output is rectified by diode D1 and smoothed by C1 to give about 25V DC.

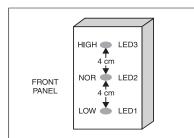


Fig. 2: Proposed panel for LEDs

This DC voltage varies proportionately with AC mains voltage, which is sensed by transistors T1 through T3.

Initially, set presets VR1 through VR3 towards ground to provide a low-resistance path across the base of transistors T1 through T3, respectively.

For setting the low voltage level, connect a manual AC voltage regulator (MVR) to the primary of transformer X1 and switch on power supply to the circuit by flipping switch S1 to 'on' position. Set the AC voltage of MVR to about 175V and slowly adjust VR1 until LED1 starts illuminating.

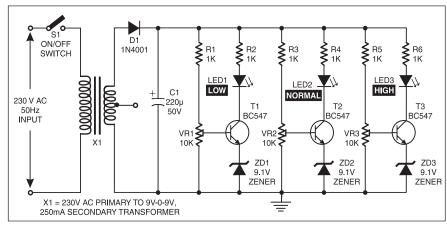


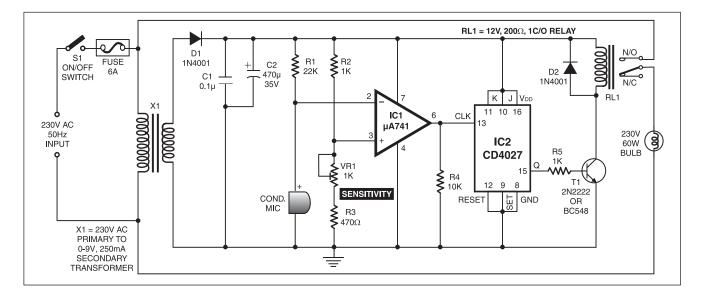
Fig. 1: Mains voltage indicator

When voltage across the base of transistor T1 reaches 9.7V (zener voltage 9.1V plus base emitter voltage 0.6V) by adjusting preset VR1, transistor T1 starts conducting. This causes LED1 to light up. LED1 stops glowing abruptly when the base voltage drops below the preset value. For setting the normal voltage level, set the AC voltage of MVR to about 200V and adjust VR2 slowly until LED2 starts illuminating.

For setting the high voltage level, set the AC voltage of MVR to about 230V and adjust VR3 slowly until LED3 starts illuminating. Now remove the MVR from the primary of step-down transformer X1 and connect the AC mains voltge to the monitor. Now the unit is ready for use.

If the mains voltage is above 230 volts, all the three LEDs continue to glow, indicating that the voltage is above 230 volts (high). If the voltage drops below 230 volts, LED3 goes off but LED2 and LED1 continue to glow, indicating that the voltage is above 200 volts but below 230 volts. If the voltage drops further below 200 volts, LED2 goes off but LED1 continues to glow, indicating that the voltage is above 175 volts but below 200 volts.

If the voltage drops below 175 volts, LED1 also stops glowing. At this stage, all the three LEDs are off, indicating that the voltage is below 175 volts.


To sum up, first, a high voltage (more than 230V) is indicated by glowing of all the three LEDs (LED1, LED2 and LED3). Second, normal voltage (200V-230V) is indicated by glowing of two LEDs (LED1 and LED2). Third, a low voltage (175V-200V) is indicated by the glowing of LED1 only. The circuit draws a total current of about 40 mA when all the LEDs glow. Mount all the LEDs on the front panel of the enclosure vertically in ascending order with a spacing of 4 cm between them as shown in Fig. 2. Fix the unit at a convenient place in the house to monitor the mains voltage.

SOUND-OPERATED LIGHT

RAJ K. GORKHALI

For the source of the source o

key in the doorlock. This helps to guard against burglars as they assume that you are awake. The sensitivity control lets you adjust the sensitivity of the circuit to detect the intended sound level. The circuit switches the light alternately, i.e. if one sound pulse switches the light on, the next one switches it off. So you don't

need to go to the switchboard to switch off the light.

The AC mains supply is steppped down by transformer X1 to deliver a secondary output of 9V AC, 250 mA. The secondary output is rectified by diode D1 and filtered by capacitor C2 to give about 12V DC. The non-inverting input (pin 3) of op-amp IC1 is used as a reference voltage, fixed by adjusting preset VR1. The voltage at the inverting input (pin 2) of IC1 is same as that across the microphone. Switch S1 is power-on/off switch.

The sound sensitivity is adjusted by preset VR1. A high value of reference voltage at pin 3 of IC1 means a subtle sound is needed to change its output at pin 6. A low value of reference voltage at pin 3 of IC1 means a loud sound is needed to change its output at pin 6. Fix the reference voltage such that the output state of IC1 doesn't change with unwanted sounds.

In the absence of any sound, the inverting input voltgae is almost equal to the full DC voltage (about 12V DC), which ensures that output pin 6 of the op-amp is initially low. Since the JK flip-flop (IC2) has been wired as a toggle flip-flop and its output pin 15 is initially low, transistor T1 is in cut-off mode and relay RL1 remains de-energised. The AC power connected to the bulb via relay contact thus does not reach the bulb and it remains 'off.'

Now when you produce some sound near the condenser microphone, the current flows through the microphone and the voltage across the microphone goes down from 12V DC via the potential divider formed by resistor R1 and the microphone. If the sound is loud enough to bring the voltage at the inverting input below the reference voltage at the non-inverting input, output pin 6 of the op-amp (IC1) goes from low to high. This low-to-high going pulse triggers the flip-flop (IC2) at clock pin 13 and its output pin 15 goes high. Now the relay energises and the bulb glows via its N/O contacts.

Producing anothor sound causes a low-to-high transition at output pin 6 of the op-amp (IC1). This low-to-high going pulse triggers the flip flop at clock pin 13 and its output pin 15 goes low. Now the relay de-energises and the bulb goes off via its N/C contacts.

This way, the bulb glows alternately if there are recurrent sound pulses.

LOW-COST ELECTRONIC QUIZ TABLE

VINOD C.M.

Here is a simple, low-cost quiz ta ble for four game participants. It de-termines the contestant who first presses the switch (S1 through S4) to answer a question and locks out the

The circuit works off 12V, 1.5A power supply. The current rating of the power supply should be according to the load (wattage of bulbs). For higher-wattage bulbs, use power supply of a higher curby preset VR1. For example, if preset VR1 is set for a resistance of 4.7k, it will give a delay of approximately 4 seconds, meaning that buzzer PZ1 and bulb BL1 will be 'on' for 4 seconds. It also indicates that partici-

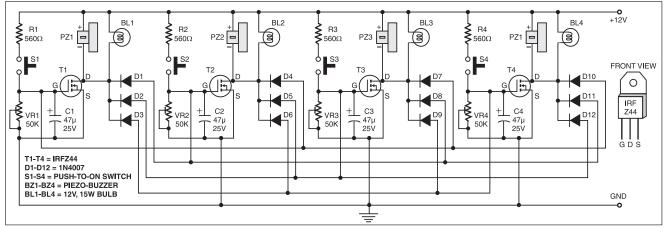


Fig. 1: Schematic of low-cost electronic quiz table

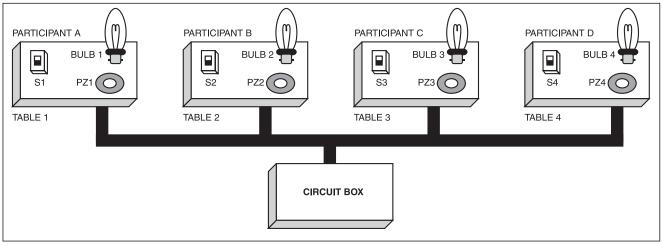
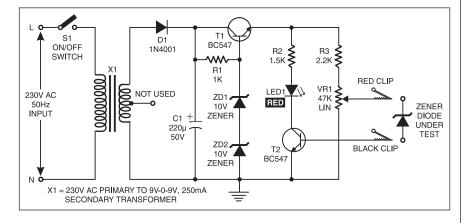


Fig. 2: Set-up for electronic quiz table

remaining three entries. Simultaneously, the respective audio alarm sounds and the bulb glows. The quiz table can be used for more number of contestants simply by adding buzzers, bulbs, MOSFETs and diodes. Besides, it provides an option for varying the time for which an individual buzzer and the corresponding bulb should be 'on' after a particular competitor has pressed the pushbutton. These timings can be set by presets VR1 through VR4 as required. rent rating.

If participant A presses switch S1, MOSFET T1 is triggered and the corresponding bulb BL1 (connected between drain of the MOSFET and 12V supply) glows and simultaneously piezobuzzer PZ1 connected in parallel to bulb BL1 sounds for the preset time. At the same time, capacitor C1 charges up to 12V, which then discharges through preset VR1. The discharging time of capacitor C1 is decided pant A is the first to press his switch. Even if any other participant, say, participant B, presses switch S2 after participant A has already pressed switch S1, buzzer PZ2 and bulb BL2 will not function since MOSFET T2 has no gate voltage to trigger because it is grounded through R2 and D1.

The same principle applies for other contestants as well. Instead of bulbs, you can also use a group of LEDs. Fig. 2 shows the set-up for electronic quiz table.


ZENER DIODE TESTER

P. VENKATA RATNAM

This zener diode tester can be used to check zener diodes of 3.3V to 18V. The breakdown voltage of the unknown zener diode is indicated on the precalibrated dial of potmeter VR1. The tester can also identify the polarity of zener diodes.

The power supply section comprising

such that the voltage at its wiper arm (red crocodile clip) exceeds the breakdown voltage of the zener diode, the zener diode conducts and applies the bias voltage at the base of transistor T2, which causes red LED1 to light up. When the voltage at the wiper arm (red clip) is less than the breakdown voltage, the zener diode does

transformer X1, rectifier diode D1, filter capacitor C1, resistor R1, transistor T1 and zener diodes ZD1 and ZD2 provides approximately 20V DC stabilised voltage to the sensor section. The sensor circuit comprises resistors R2 and R3, potmeter VR1, red LED1 and transistor T2.

When linear potmeter VR1 is adjusted

not conduct and red LED1 does not glow.

For calibration of the zener diode tester, initially set the pointer knob of potmeter VR1 towards zero-resistance position. Short red clip of the potmeter and black clip of the transistor and switch on the tester. Rotate the pointer knob of potmeter VR1 slowly in clockwise direction until LED1 just starts to glow. Mark this setting of the knob on the paper dial as 0V.

Now connect a known zener diode of 3.3V between both the clips (red clip to the cathode and black clip to the anode of the zener diode) as shown in the figure. Rotate the knob of potmeter VR1 further in clockwise direction until LED1 just starts to glow. Mark this setting of the knob on the paper dial as 3.3V. Likewise, calibrate the dial of potmeter VR1 for other values of zener diodes by connecting known zener diodes to the tester. Now the tester is ready for use.

For testing an unknown zener diode, connect it across the clips in correct polarity and rotate the knob of potmeter VR1 until red LED1 just starts to glow. The voltage shown by the pointer knob on the dial at this setting is the breakdown voltage value of the zener diode under test.

If the zener diode is connected in reverse polarity (red clip to the anode and black clip to the cathode), the LED glows brightly at all settings of the knob above the zero reading, indicating that the zener diode is wrongly connected. The anode and cathode terminals of rectifier diodes can also be identified in this way. Do not touch the clips while testing.

HIGHWAY ALERT SIGNAL LAMP

ere is a signal lamp for safe highway driving. The lamp automatically emits brilliant tricolour light when a vehicle approaches the rear side of your vehicle. It emits light for 30 seconds that turns off when the approaching vehicle overtakes. The ultra-bright blue, white and red LEDs of the signal lamp emit very bright light to alert the approaching vehicle's driver even during the day, giving addi-

D. MOHAN KUMAR

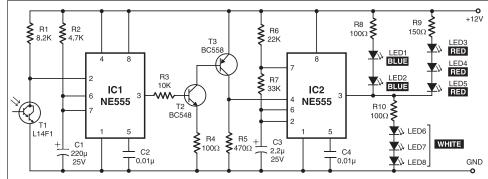


Fig. 1: Circuit diagram of highway alert signal lamp

Fig. 2: Pin configuration

battery power.

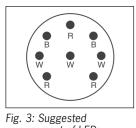
The circuit is built around two timer ICs NE555 (IC1 and IC2). IC1 is designed as a standard monostable, while IC2 is designed as an astable. Darlington phototransistor L14F1 (T1) is used as a photosensor to activate the monostable. The collector of phototransistor T1 is connected to trigger pin 2 of IC1, which is normally

tional safety

during night,

or when you

need to stop


your vehicle

on side of the

highway. The

circuit saves

considerable

arrangement of LEDs

to give a short pulse to IC1, and the output of IC1 goes high for a period determined by resistor R2 and capacitor C1. The output of IC1 is fed to the base of transistor T2 via resistor R3. Transistor T2 conducts to drive transistor T3 and its collector goes high to take reset pin 4 of IC2 to high level. This activates astable IC2, which switches on

kept high by

headlight from

an approach-

ing vehicle il-

luminates the

phototransis-

tor, it conducts

When

resistor R1.

and off the LED chain alternately. The intermittent flashing of LEDs gives a beautiful tricolour flashlight effect.

The circuit can be easily constructed on a small piece of general-purpose PCB. Fig. 2 shows the bottom and front views of Darlington phototransistor L14F1. The proposed arrangement of LEDs, which are soldered in a circular fashion on a general-purpose PCB, is shown in Fig. 3. Use a circular reflector for the LEDs to get brighter light. Fix the LED arrangement on the rear side of your vehicle, and the phototransistor where it is illuminated directly by the headlight of the approaching vehicle. 12V DC supply to the circuit, can be provided by your vehicle battery with proper polarity.

VARIABLE POWER SUPPLY WITH DIGITAL CONTROL

MANESH T. MATHEW

The most frequently used device in electronic workshops and labora tories is a universal power supply that provides a variable, fluctuation-free output. Here we present a variable power supply with digital control that is simple and easy to construct.

The circuit is built around an adjustable 3-terminal positive-voltage regulator IC LM317, CMOS decade counter IC CD4017, timer IC NE555 and 3-terminal fixed negative-voltage regulator LM7912.

The AC mains supply is stepped down by transformer X1 to deliver a secondary output of 12V-0-12V AC, 1A. The output of the transformer is rectified by a

full-wave rectifier comprising diodes D1 through D4. Capacitors C1 through

C4 are connected in parallel to rectifier diodes to bypass undesired spikes and provide smooth and fluctuation-free power.

Capacitors C5 and C13 are used as filters to eliminate ripple. Here both negative and positive half cycles are used to obtain positive as well as negative

DC output. LED1, along with currentlimiting resistor R1, is used for mains 'on' indication.

Timer IC NE555 (IC1) is wired as an

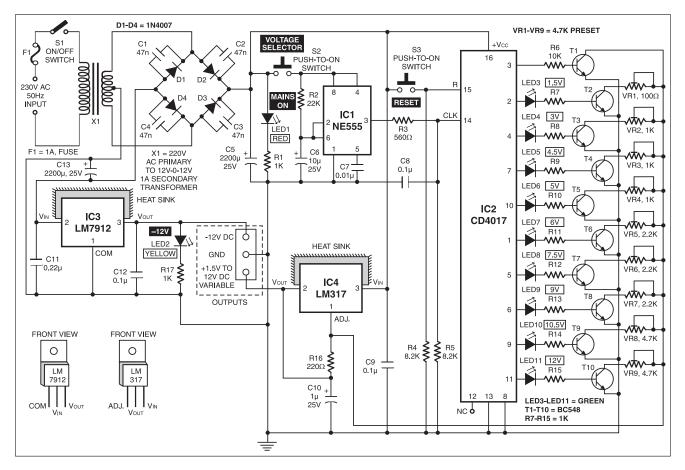
astable multivibrator. It generates clock pulses when switch S2 is pressed. The output of IC1 is connected, via an RC network, to the clock input of counter IC CD4017 (IC2).

IC CD4017 is a decade ring counter. Each of its ten outputs goes high one by one when a clock pulse is received. The outputs of IC CD4017 are connected to the bases of transistors T1 through T10, respectively, as shown in the figure. LED3 through LED11 are used here to indicate the voltage levels. The collectors of transistors T2 through T10 are connected to presets VR1 through VR9, respectively, which are used to set the output voltage.

Adjustable voltage regulator IC LM317 (IC4) develops 1.25V nominal reference voltage (VREF) between its output and the adjustable terminal. The reference voltage appears across resistor R16. When the voltage is constant, a constant current flows through one of the output-setting variable resistors (VRset, VR1 through VR9), giving an output voltage at pin 2 of IC4 as follows:

VOUT=1.25(1+VRset/R16).

Presets VR1 through VR9 are adjusted to get the desired output voltage. The col-


lector of transistor T1 is directly connected to ADJ terminal (pin 1) of IC4, so the output voltage of IC4 will be the voltage across fixed resistor R16, which is equal to 1.25V. When switch S3 is pressed, pin 3 of IC2 goes high and the output voltage becomes 1.2V.

When switch S2 is pressed, the output of IC1 goes high. As a result, the outputs of IC2 go high one by one as a ring counter. Since presets VR1 through VR9 are connected at the collectors of transistors T2 through T10, respectively, different output resistances appear between the adjustable and ground terminals of IC4, resulting in different output voltages. By using a properly calibrated digital multimeter you can easily adjust the presets to obtain 1.5V to 12V.

A fixed, negative 12V DC can be obtained by using fixed, negative-voltage regulator IC LM7912 (IC3). Thus the power supply unit can be used for circuits requiring both negative and positive DC voltages.

When CD4017 is reset by pressing switch S3, the output voltage becomes

1.2V and all the voltage-indication LEDs turn off.

Assemble the circuit on any generalpurpose PCB and enclose it in a suitable cabinet. Use suitable heat-sinks for regula-

Readers' comments

I am very happy about your suggestion of the use of regulator LM317. However, there is no provision of applying different input voltages to get different output voltages. The input voltage supply from mains transformer after rectification is directly connected to pin 3 of regulator LM317. I tried with an output load of 10.5V, 350 mA for 12V input (fixed) to regulator LM317 and the regulator was heated normally. Please tell me a simple way to apply differtors IC3 and IC4. Since pin configurations of the regulators are different, never fix both regulators on the same heat-sink. For

ent input voltages to get different output voltages at approx. 1A load.

Ankana Mukherjee Through email

The author, Manesh Mathew, replies: LM317 is used as a variable voltage regulator to achieve different output voltages at pin 2 according to different voltages applied at pin 1. This is done through a digital control, as explained in the circuit. At pin 3, apply an input voltage that is approx. 3V above the maximum S2 and S3, using microswitches will enhance the beauty of the unit. LED2 is used to indicate the negative 12V DC voltage.

output voltage one requires, i.e., to get a regulated voltage of 12V at 1A, one has to apply a minimum input voltage of 15V, 1A. (Refer to the specifications of the IC for the maximum input that can be applied to get the regulated output.) This is done to compensate for the voltage drop in the regulator and input voltage variations. In this circuit, the input voltage of the regulator is kept constant at 15V for getting 12V and below, as per one's requirements.

SIMPLE SECURITY SYSTEM

PRAVEEN KUMAR M.P.

ere's a simple home security system that sounds an alarm whenever somebody enters your house through the gate. The circuit consists of

transmitter, receiver and alarm sections. The transmitter and receiver sections are fitted on the compound wall pillars to which the gate is attached, while the alarm circuit is mounted inside the house. The transmitter continuously transmits IR rays, which are incident on the receiver. When anyone passes

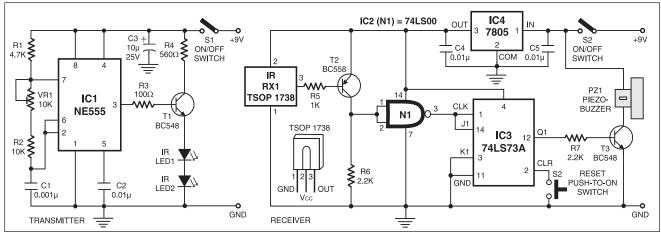


Fig. 1: Circuit diagram of transmitter and receiver of simple security system

through this continuous flow of IR beam, this is sensed and the alarm sounds, indicating that somebody has opened the front gate and entered the compound. The alarm will be 'on' until the reset pushbutton is pressed.

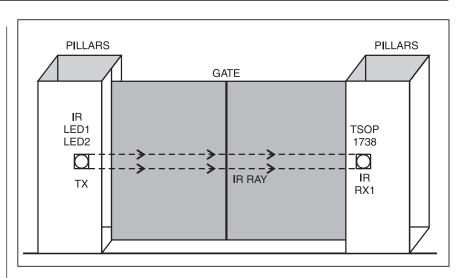
The transmitter is built around timer NE555 (IC1), which is wired as an astable multivibrator to oscillate at a frequency of 38 kHz. The output of IC1 is connected (via resistor R3) to the base of transistor T1. Transistor T1 drives both IR LEDs (LED1 and LED2). VR1 is used for adjusting the transmitting frequency.

The IR beams transmitted by LED1 and LED2 are incident on infrared receiver module RX1 of the receiver section, which produces a low output if the IR beam is interrupted by someone. Transistor T2 becomes forward biased and the output of IC2 goes low. The low output of IC2 is fed to the clock input of the JK flip-flop (IC3). The JK flip-flop acts as a latch. Its high output drives piezobuzzer PZ1 via transistor T3 and the buzzer sounds. To stop the alarm, you have to press reset switch S2.

Mount the transmitter and receiver units on the pillars of the gate. Ensure that ambient light does not reach the units to cause false alarm.

Readers' comments

Circuit is not working even though I have used the same components as given in the article. What may be the problem in my circuit? Does it require any change or correction?

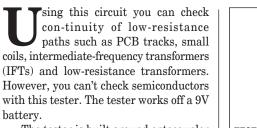

> Akhilesh Mogra Udaipur

The author, Praveen Kumar M.P., replies:

This may be due to the misalignment of transmitter and receiver sections. In order to eliminate this problem, the following steps may be taken:

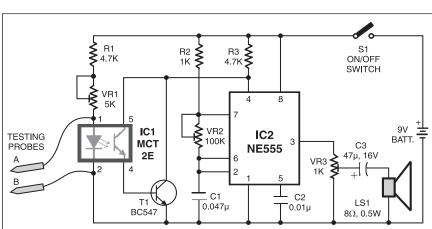
1. Construct the transmitter as given in the article and a portion of the receiver as shown in the figure here. Use a shielded cable for connecting the IR eye (IR RX1) and a regulated 5V supply for the receiver section.

2. IR RX1 (TSOP1738) works in the IR region of light, i.e., at about 38 kHz. The output of the transmitter is tuned to this frequency by adjusting preset VR1.


3. Place IR RX1 near IR LEDs such that they face each other and are in line of sight. This will allow the IR rays emitted by IR LEDs to fall on IR RX1. Adjust preset VR1 slowly, using a screwdriver, until LED3 glows. Now the transmitter and the receiver are aligned correctly. When RX1 is taken away from IR LEDs, LED3 must stop glowing.

4. Now construct the remaining portion of the receiver circuit as given in the article.

The circuit should now work satisfactorily.


LOW-RESISTANCE CONTINUITY TESTER

PRADEEP G.

The tester is built around optocoupler MCT2E (IC1) and timer IC 555 (IC2) that is wired in free running mode. Optocoupler MCT2E is used here as a continuity sensor. Testing probes A and B are connected to pins 1 and 2 of optocoupler IC1. The phototransistor inside the optocoupler is connected to transistor BC547 (T1) to form a Darlington pair, which improves the performance of the circuit.

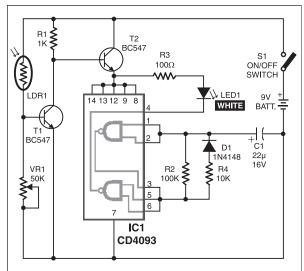
When the probes are not shorted, the LED inside the optocoupler glows and the Darlington pair conducts to keep reset pin 4 of IC 555 at ground level and thus no

sound is produced.

When probes are shorted via a low resistance, the LED stops glowing and the Darlington pair doesn't conduct. As a result, reset pin 4 of IC2 goes high to activate the loudspeaker, which generates a sharp audio tone. To minimise the current through IC1 when probes are not shorted, adjust VR1 until the circuit just stops sounding. The output tone and loudness can be varied by adjusting presets VR2 and VR3, respectively.

CHILD'S LAMP

D. MOHAN KUMAR


Here is a mini emergency lamp that you can use as a tabletop lamp in your child's study room. It is battery-operated and gives sufficient light for the child to move out of the room when power fails. The white LED in the circuit automatically turns on when light in the room goes off following a power cut. The LED gives a flashing light instead of glowing continuously to reduce power consumption.

The circuit comprises a light sensor and an LED flasher designed around CMOS IC CD4093 (IC1). The light sensor switch comprises a light-dependent resistor (LDR) and npn transistors T1 and T2. When ambient light is present, the low resistance of LDR1 drives transistor T1 into conduction. This keeps transistor T2 cut-off due to low base bias. The flasher circuit does not get power as long as ambient light falls on LDR1. When the resistance of LDR1 becomes high in darkness, transistor T1 stops conducting and transistor T2 starts conducting to turn on the LED lamp.

IC1 is designed as a simple oscillator using its gate 1 (comprising input pins 1 and 2 and output pin 3). The oscillator's external components comprise resistor R2 and capacitor C1. Diode D1 and resistor R4 help in rapid charging of capacitor C1. When capacitor C1 charge to around 50% of Vcc, output of gate 1 of IC1 goes low to discharge capacitor C1. The output from pin 3 of IC1 again goes high to charge capacitor

C1 again. This cycle repeats and sets up an oscillation, which is given to gate 2 (comprising input pins 5 and 6 and output pin 4) of IC1. Gate 2 serves as a buffer to drive the white LED (LED1).

For the given values of resistor R2 and

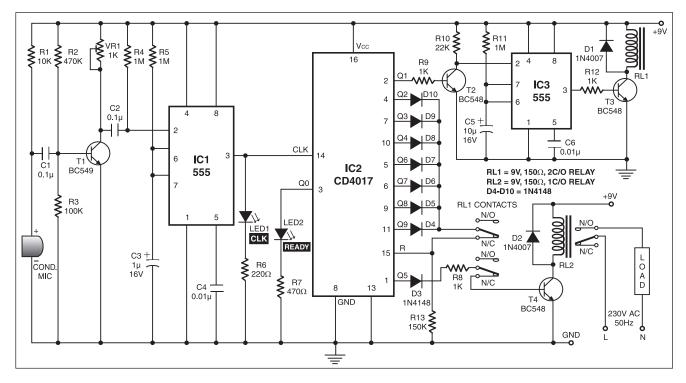
capacitor C1, the flashing rate of LED1 is one per second (1 Hz). It can be increased by decreasing the value of capacitor C1. Pin 14 of IC1 is Vcc and all the unused input pins are tied to the positive rail (pin 14) to prevent floating. The circuit can be constructed on a small veroboard. Use a reflective holder for LED1, which should be directed downwards at an angle of 45 degrees to prevent

direct viewing of LED1 which gives a highintensity light that is harmful for eyes. Preset VR1 can be adjusted to control the sensitivity of LDR1. You can enclose the circuit in a plastic doll with LED1 as its headlamp to make it an attractive gadget for your child. Mount LDR1 such that ambient light falls on it directly.

CLAP-OPERATED ELECTRONIC SWITCH

Here's a simple clap-operated electronic switch. Using this switch, you can turn on any appliance by clapping five times and turn it off by a single clap. The switch activates the appliance only if you apply the right clap code (five claps here) within the preset time (10 seconds). If you apply a wrong clap code (other than five claps) or you are unable to apply five claps within 10 seconds, the

DIPANJAN BHATTACHARJEE


switch does not activate the appliance.

The circuit works off a 9V DC power supply. The condenser microphone converts the clap sound into an electrical signal. This electrical signal is amplified by transistor BC549 (T1). The ampli-

Claps	RL1	RL2	LED2	Appliance status
1	En	De	Off	Off
2	En	De	Off	Off
3	En	De	Off	Off
4	En	De	Off	Off
5	En	De	Off	Off
6	Off	Off	On	Off after 10 seconds

On/Off Status of the Appliance for Every Clap

BC549 (T1). The ampli- Note: En = energised; RL1 = Relay 1; De = de-energised; RL2= Relay 2

fied output is given to trigger pin 2 of monostable IC1, which produces a clock pulse at its output pin 3. The output of IC1 is fed to clock pin 14 of decade counter IC2.

Initially, when the power is switched on, the Q0 output of IC2 is high and glowing of LED2 indicates that the switch is ready for use. All others outputs of IC2 (Q1 through Q9) are low. The Q5 output is used for activating the appliance via relay RL2. At each clock (generated with each clap), the output of IC2 gets incremented. The Q1 output of IC2 is used to trigger the monostable (IC3). The output of IC3 is used to drive relay RL1. IC3 acts as a monostable multivibrator with a time period of approximately 10 seconds, which provides delay time to turn on an appliance even after completing the five claps before the preset time of 10 seconds. Contacts of relay RL1 separate the other output pins of IC2 (except Q5) from reset pin 15 for the preset time of 10 seconds.

When all the five claps are applied within 10 seconds, the Q5 output of IC2 goes high and relay RL2 energises to turn on the appliance just after the de-energisation of relay RL1. The table shows the on/off condition of the appliance for every clap.

When you apply a wrong clap code, the high output of IC2 resets it via its pin 15 and the appliance doesn't turn on.

LIGHT-CONTROLLED DIGITAL FAN REGULATOR

V. GOPALAKRISHNAN

t is very difficult to trace the switchboard in a dark room at night. Here is a torchlight-operated switch that allows you to control the fan speed remotely from your bed. The fan speed can be varied by the number of times you focus the torch light on the light-dependent resistor of the circuit—same way as you control

0

1

2

3

4

 $\mathbf{5}$

6

7

Energised

relay No

1

2

3

4

Fan speed

Off

Off

Off

Off

2

3

4

1 (min)

No. of focus Display DIS1

on LDR1

0

1

2

3

4

 $\mathbf{5}$

6

7

the fan speed by rotating the regulator to different number positions.

Fig. 1 shows the circuit of lightcontrolled digital fan regulator. It comprises timer NE555 (IC1), decade counter 7490 (IC2), BCD-to-7-segment decoder/driver 7447 (IC3), common-anode 7-segment display (DIS1),

BCD-to-decimal decoder 7442 (IC4) and a hex Fan Control With Torch Light Focused on the LDR inverter (IC5). The fan regulator is triggered when torchlight falls on light-dependent resistor LDR1 and its resistance goes low.

> The monostable (IC1) is wired such that its time period is adjusted to 1.3 seconds. The monostable clocks are counted

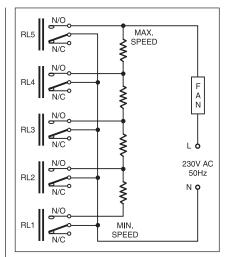


Fig. 2: Relay contacts of fan regulator resistors

with decade counter IC2. The Q0 through Q3 outputs of decade counter IC2 are

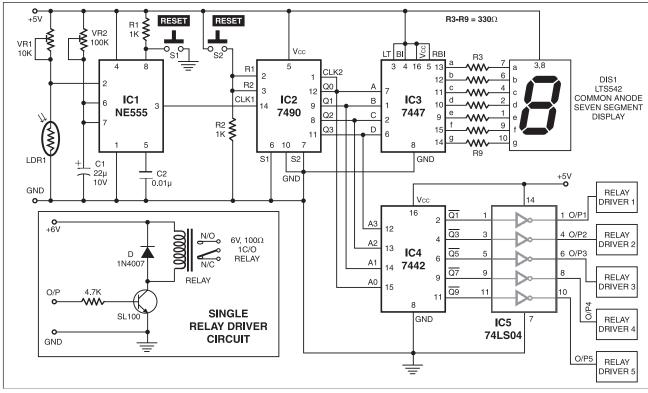


Fig. 1: Circuit of light-controlled digital fan regulator

given to IC3 and IC4.

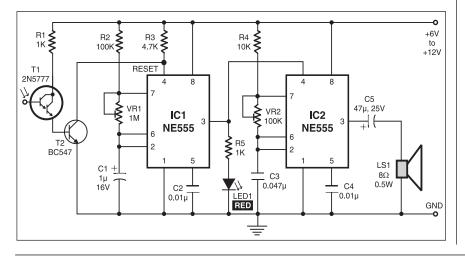
The outputs of IC3 are given to the 7segment display, while the outputs of IC4 are given to inverters. A common-anode, 7segment display (DIS1) shows the number of times you focus the torchlight on LDR1. If it is an even number, the fan will be off. With the increase in odd numbers, the speed of fan increases.

The odd-numbered outputs of decoder

IC4 (Q1, Q3 Q5, Q7 and Q9) go to the corresponding relay driver circuits via hex inverter IC5. The normally-opened (N/O) contacts of relays RL1 through RL5 are connected to regulating resistors as shown in Fig. 2.

The even-numbered outputs of decoder IC4 (Q0, Q2 Q4, Q6 and Q8) are not used. At these outputs, the fan turns off. Pushto-on switches S1 and S2 are used for

initial resetting of monostable IC1 and decade counter IC2, respectively. For the circuit to work even in the presence of ambient light, for example, during daytime, LDR1 is made dark by covering it with an inked paper.


The digital fan regulator circuit (except relay driver circuits) works off 5V DC, while the relay driver circuits work off 6V DC.

SENSITIVE OPTICAL BURGLAR ALARM

PRADEEP G.

This optical burglar alarm uses two 555 timer ICs. Both the ICs are wired as astable multivibrators. The first astable multivibrator built around IC1 produces low frequencies, while the second astable multivibrator built around IC2 produces audio frequencies.

General-purpose Darlington phototransistor 2N5777 (T1) is used as the light sensor. To increase the sensitivity of the circuit, npn transistor BC547 (T2) is used.

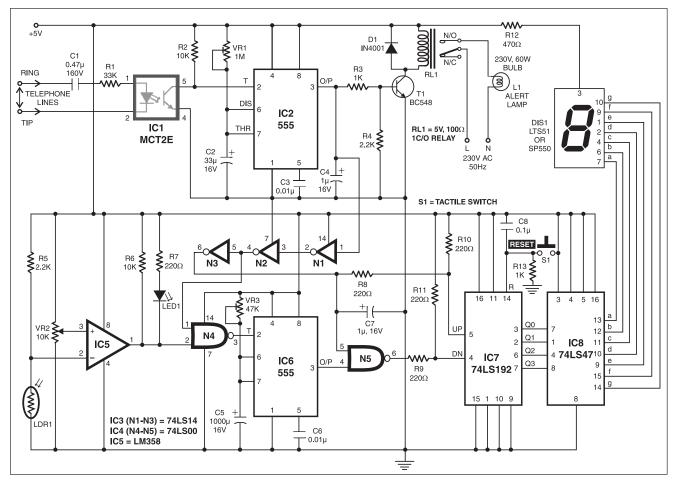
Place phototransistor T1 where light falls on it continuously. Phototransistor T1 receives light to provide base voltage to transistor T2 . As a result, transistor T2 conducts to keep reset pin 4 of IC1 at low level. This disables the first multivibrator (IC1) and hence the second multivibrator (IC2) also remains reset so the alarm (loudspeaker LS1) does not sound.

When light falling on Darlington phototransistor T1 is obstructed, transistor T2 stops conducting and reset pin 4 of IC1 goes high. This enables the first multivibrator (IC1) and hence also the second multivibrator (IC2). As a result, a beep tone is heard from speaker LS1. The beep rate can be varied by using preset VR1, while the output frequency of IC2 can be varied by using another preset VR2.

The circuit works off a simple 6V-12V DC power supply.

WATCHMAN WATCHER

JAYAN A.R.


Here is a circuit that can be used in offices, stores, warehouses, etc dur-ing night to check whether the watchman of your establishment is on duty. For operation, it uses an existing telephone (e.g. in office or store) closest to the watchman's post. The watchman

is given an audio alert signal by just ringing the office/store telephone once (minimum) from your residence or any other place, preferably using your mobile phone. The ring is detected by the given circuit and the watchman is also given a visual alert signal by a glowing lamp. The lamp remains 'on' for a duration of nearly 60 seconds soon after the ringtone. The watchman is given an instruction to register his presence by simply pointing his torch-light beam towards a wall-mounted LDR sensor unit (without lifting the handset off-cradle of the ringing telephone). This is to be done within the time period during which the alert lamp glows. If he fails to do it within the permissible time, the circuit registers his absence by incrementing a count. If he does, the count remains unaltered.

Up to nine separate alert rings are considered here. The count displayed is the number of times the watchman eration and the relay is de-energised.

When the phone rings, the internal transistor of the optocoupler conducts to cause a high-to-low transition at trigger pin 2 of monostable IC2. Timer IC2 gets

Mode-Select Table of 74LS192					
MRpin 14	PL pin 11	UPpin5	DNpin4	Mode	
Н	Х	Х	Х	Reset	
L	L	Х	Х	Preset	
L	Н	Η	Н	No change	
L	Н		Н	Count up	
L	Н	Н		Count down	
<i>Note:</i> X = Don't care					

failed to register his presence. The mobile phone records the called number and call time, and it can be used with the displayed count to get the timing details.

The telephone lines (TIP and RING) in the circuit are connected across optocoupler MCT2E (IC1) through a resistor-capacitor (R1-C1) combination. The diode in the optocoupler conducts only during ring pulses. The collector of the optocoupler transistor is normally off and a 5V signal is available here. This signal is connected to the trigger input of IC 555 (IC2) configured in monostable mode. The time constant of IC2 is set to nearly one minute (1.1RxC). Its output pin 3 is low during normal mode of optriggered on this trailing edge to energise relay RL1. This relay is used to switch on alert lamp L1. The circuit doesn't respond to additional trigger inputs for the set duration of the monostable. The caller may cut the phone call after hearing ringback tone from the called phone.

The sensor circuit formed using LDR1 activates another monostable 555 (IC6). LDR1 has a resistance of 2.2 kiloohms in daylight, which drops below 50 ohms when torchlight beam falls on it. (An LDR of nearly 2cm diameter has been used in this circuit.) Comparator LM358 (IC5) compares the level set at pin 3 (nearly 1V, set using a 10k pot) with the level at pin 2.

When no light is falling on LDR1, its

voltage is above 1V and IC5 has a low output at its pin 1. When light is falling on LDR1, its voltage drops below 1V and IC5 output at its pin 1 becomes high. This low-to-high transition is NANDed with the output of monostable IC2 (via inverters gates N1 and N2) to form the trigger signal for monostable IC6. So the trigger input is normally high, which falls when torchlight beam is focused on LDR1. It returns to high state when torchlight is switched off. So the torch is used as a remote for triggering monostable IC6 and this triggering is enabled only when alert lamp L1 is 'on.'

Monostable IC6 has a time constant of nearly one minute (1.1RxC). It is used to form a down clock signal for 4-bit up/down-counter 74LS192 (IC7). Counter IC7 has two separate clocks for up and down counts (refer to the table). For correct counting, it needs one clock line to be high during high-to-low transition of the other clock line. Otherwise, it counts erratically.

To operate counter IC7, the voltage levels and timings of the two clock inputs (up and down) are to be properly adjusted. Both trigger inputs, i.e. up and down clocks, are asynchronous.

The output of monostable IC2 is filtered using capacitor C4 to remove unwanted transitions and inverted using Schmitt trigger inverter 74LS14 (IC3). This forms a signal with correct rising and falling edges. The inverted signal from pin 6 of gate N3 is used as the up clock.

 through reset switch S1. The 7-segment, common-anode display DIS1 is driven through IC 74LS47 (IC8). When the phone rings, count '1' is displayed after nearly one minute. This happens if the watchman fails to focus the torchlight beam on LDR1.

If LDR1 receives light from the torch of the watchman within the allowed time period, the down clock remains high until the up clock is high. The counter counts up and then down, so, in effect, the count remains unchanged.

All components, except LDR1, are kept in a sealed cabinet with locking arrangement. Only LDR1 is wall-mounted and visible outside. This is done to avoid manual resetting of the counter. The circuit is to be powered by a battery to avoid resetting of the count during power failure.

The working procedure can be summarised as follows:

1. Initially, when the power supply is switched on, power-on-reset components C8 and R13 reset counter IC7 and the display shows '0.'

2. Now dial the telephone number (where parallel system is installed) from outside or from your mobile. For the first ring, relay RL1 energises and alert lamp L1 glows.

3.When alert lamp L1 is off, the counter is incremented by '1.'

4. If the watchman focuses the torchlight beam on LDR1 within the glowing time of alert lamp L1, the counter first counts up and then counts down and finally the display shows 0. This indicates that the watchman is present.

5. If the watchman focuses the torchlight beam on LDR1 after alert lamp L1 goes off, up-counting takes place and the display shows '1.' This indicates that the watchman is absent.

CELL-PHONE-CONTROLLED AUDIO/VIDEO MUTE SWITCH

T.K. HAREENDRAN

This cell-phone-controlled audio/ video mute switch is highly use ful in automobiles. The circuit automatically disconnects power supply to the audio/video system whenever the mobile handset is lifted off the holder for making or receiving a call. You can use any readily available cell-phone holder with some

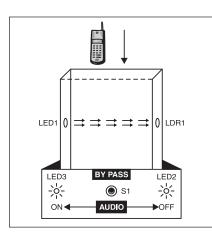


Fig. 1: Proposed cell-phone holder

160 ELECTRONICS PROJECTS Vol. 25

minor alterations or fabricate it yourself as shown in Fig. 1.

The circuit is wired around IC LM555 (IC1), the CMOS version of timer NE555, as

shown in Fig. 2. IC1 is used as a mediumcurrent line driver with either an inverting or non-inverting output. It can sink (or source) current of up to 50 mA only, so take

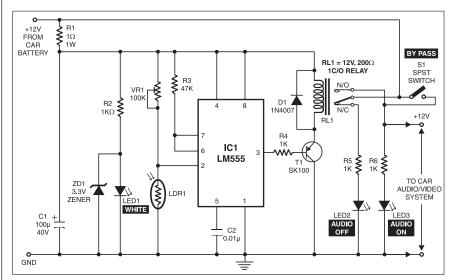


Fig. 2: The circuit of the cell phone-controlled audio/video mute switch

care while handling it. The audio/video system is connected to the circuit via normally opened (N/O) contacts of the relay.

When the cell phone is in its holder, LDR1 does not receive any light from white LED1 and its resistance is high. As a result, the voltage at pin 2 of IC1 remains high to provide a low output at pin 3. The low output of IC1 activates relay RL1 and the audio/video system gets power supply via its N/O contacts. LED3 glows to indicate that the audio/video system is 'on.'

When the handset is taken off the holder, light rays from LED1 fall on LDR1 and its resistance decreases. As a result, the voltage at pin 2 of IC1 decreases to provide a high output at its pin 3. The high output of IC1 deactivates relay RL1 and the audio/video system does not get power supply. LED2 glows to indicate that the audio/video system is 'off.'

Preset VR1 is used to control the sensitivity of the circuit. Zener diode ZD1 is used for protecting white LED1 from the higher voltage. The circuit works off a 12V car battery. Switch S1 can be used to manually switch on/off the audio/video system.

PANEL FREQUENCY METER

V. DAVID

Here's a simple panel frequency meter to measure the frequency of 230V AC mains. When you connect it to the 230V AC line, the display shows the line frequency. Generally, the line frequency is 50 Hz, which may vary from 48 Hz to 52 Hz. Beyond this frequency range.

sensitive equipment may start malfunctioning.

The AC mains supply is stepped down by transformer X1 to deliver a secondary output of 9V-0-9V AC, 250 mA. The secondary output of the transformer is rectified by diodes D1 and D2, filtered by capacitor C1 and given to regulator IC1 to produce regulated 6V DC. 9V AC is also connected to pins 2 and 6 of IC2 via resistor R1. Timer IC2 converts the sinewave frequency sample of AC mains into a square wave that is more suitable for the circuit operation.

IC CD4093 (IC3) is used as an

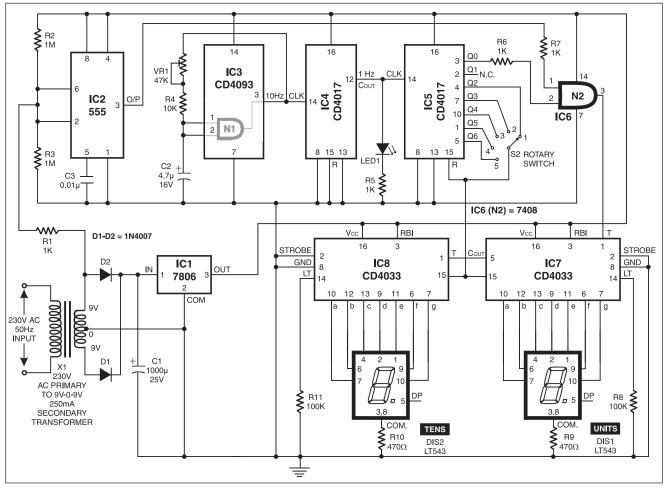
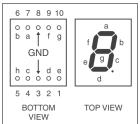



Fig. 1: The circuit of the panel frequency meter

oscillatorcum-divider. The oscillator, wired around gate N1, produces 10Hz clock. D e c a d e counter IC4 divides 10Hz

clock by 10

Fig. 2: Top and bottom views of LTS543 common-cathode, 7-segment displays

to produce 1Hz clock. The output of gate N1 is fed back to its inputs via potentiometer VR1 and resistor R4. Capacitor C2 connected between the inputs of gate N1 and ground charges/discharges depending on the logic level at the output of gate N1. The values of VR1, R4 and C2 are selected to produce accurate 10Hz clock.

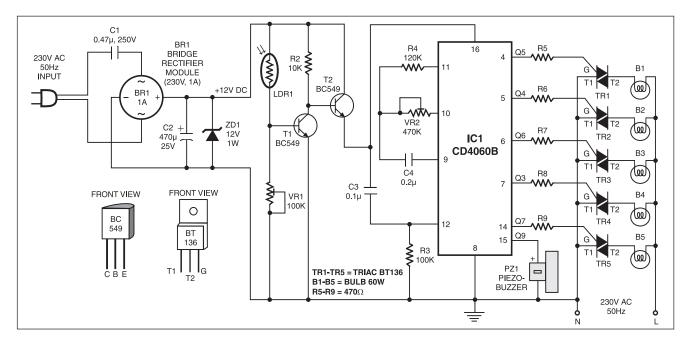
Decade counter IC CD4017 (IC4) divides the output of IC3 by 10 to provide one pulse per second. LED1 connected to pin 12 of IC4 gives one flash per second to indicate that the oscillator and the counter are working properly.

This 1Hz clock is fed to clock pin 14 of decade counter IC CD4017 (IC5), whose Q0 output is given to pin 2 and the square wave produced by IC2 is given to pin 1 of AND gate N1. Therefore, the unknown frequency of AC mains line, applied to pin 1 of AND gate N1, passes through it for only one second and the number of clocks per second are counted by IC7 and IC8.

Decade counters/7-segment decoders IC7 and IC8 are cascaded to drive common-cathode, 7-segment displays DIS1 and DIS2 (each LTS543). DIS1 shows units place of the frequency and DIS2 shows tens place. The top and bottom views of LTS543 common-cathode, 7-segment displays are shown in Fig. 2.

This is an auto-reset circuit. You can select the reset time of 1 second through 5 seconds using rotary switch S2, which is connected to reset pins of IC5, IC7 and IC8. For long-time display of the frequency, keep the knob of rotary switch S2 towards fifth position. Keeping rotary switch S2 to first position (minimum reset time) allows you to instantly see any variation in the supply frequency on the display. Also, while adjusting the generator frequency to mains frequency, keep rotary switch S2 towards first position.

RANDOM FLASHING X-MAS STARS


This novel colour display adds glit ter to your Christmas and New Year celebrations. Unlike the usual running or flickering pattern, the lamps flash randomly to give a more attractive lighting effect. The display is fully automatic: the bulbs remain switched off during day and turn on like twinkling stars in the evening.

The circuit is designed around 14stage, ripple-carry binary counter IC

D. MOHAN KUMAR

CD4060B. This IC has an internal oscillator and 14 bistable stages that are cascaded in series fashion. When the first bistable gets the clock signal from the oscillator, it turns on to drive the second bistable, which, in turn, drives the third bistable and so on. Each bistable divides the input signal by two. Out of a total of 14 possible outputs only ten outputs have been brought out on the external pins. This circuit uses only six outputs. Values of resistor R4, VR2 and capacitor C4 determine the basic frequency of the built-in oscillator. By adjusting VR2, the flashing rate of the lamp can be changed.

Five outputs of IC1 are connected to the gates of triacs TR1 through TR5 (BT136) via current-limiting resistors R5 through R9, respectively. When the outputs of IC1 go high, the triacs get gate current to switch on the lamps (230V, 60W). The lamps turn on/off in a random

fashion, giving a display pattern that is more attractive than the monotonous pattern of chaser lamps.

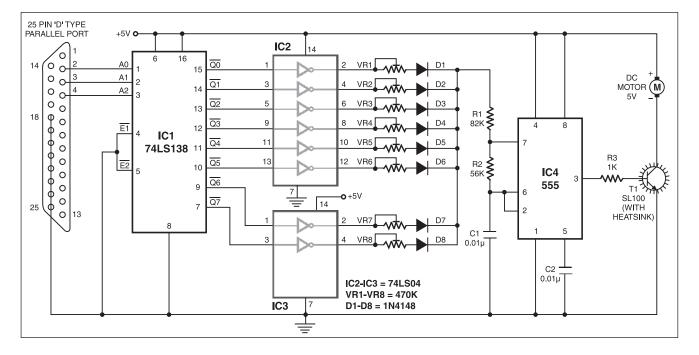
The use of a light-dependent resistor (LDR) automates the working of the circuit, so the user doesn't have to manually switch on/off the lamps daily. LDR1 and npn transistors T1 and T2 (each BC549) form the automatic switch. The resistance of LDR1 is low in daylight and increases in darkness. So during daytime, LDR1 gives base current to transistor T1, which conducts to pull the base of transistor T2 to low and hence transistor T2 remains cut-off. As a result, the rest of the circuit remains inactivated. During night, transistor T1 turns off to drive transistor T2 and provide supply voltage to IC1. Potmeter VR1 is used to adjust the sensitivity of the LDR.

The circuit is powered directly from the AC mains via capacitor and bridge rectifier module (BR1). Absence of transformer for the power supply reduces the cost as well as the size of the unit. Capacitor C1 drops the AC voltage to a safer level. The bridge rectifier module rectifies the AC and capacitor C2 smoothes the resulting DC. Zener diode ZD1 regulates the output voltage to 12V DC. The circuit can be assembled on a small PCB or a breadboard. Mount the triacs with sufficient space in between to avoid short circuit. You can add a musical tone generation circuit to this circuit so that it sings a musical song when the lamps flash. It can be connected directly between output pin 15 of IC1 and ground, replacing the piezobuzzer. Connect ground rail (negative) of the circuit to the neutral line. Enclose the circuit in a shockproof plastic case.

Caution. Take extreme care while testing the circuit since most of its parts are at mains potential and hence lethal.

PC-BASED DC MOTOR SPEED CONTROLLER

R. KARTHICK


This circuit allows you to control the speed of a DC motor (in eight lev-els) from your PC's parallel port. The PC uses a software program to control the speed of the motor.

The motor is connected to the PC through an interface circuit. The interface circuit consists of 1-of-8 decoder IC 74LS138 (IC1), hex inverter ICs 74LS04 (IC2 and IC3), resistor networks, timer IC 555 (IC4) and motor driver transistor SL100 (T1). The decoder IC accepts binary weighted inputs A0, A1 and A2 at pins 1, 2 and 3, respectively. With active-low enable input pins 4 and 5 of the decoder grounded, it provides eight mutually exclusive active-low outputs (Q0 through Q7). These outputs are inverted by hex inverters IC2 and IC3.

The resistor network comprising

presets VR1 through VR8, resistors R1 and R2 and capacitor C1 are the timing components of timer IC 555 (IC4), which is configured in astable mode. The output of IC4 is a square wave, which is fed to the base of transistor T1 via current-limiting resistor R3. Transistor T1 is used to drive the motor.

The pulse-width modulation (PWM) method is used for efficient control of the

motor. The output of the PC is decoded to select a particular preset (VR1 through VR8). The value of the selected preset, along with resistors R1 and R2 and capacitor C1, changes the output pulse width at pin 3 of IC4. Thus the motor speed can be increased/decreased by choosing a particular resistance. For high-power motors, the transistor can be replaced by an IGBT or a power MOSFET.

The software (speedM.c) is written in

'C' language and compiled using Turbo C compiler.

Initially, when the motor is 'off,' the program prompts you to press 'Enter' key to start the motor. Once you press the key, the motor starts running at full speed. After a few seconds, the program asks you to press any key from the keyboard to go to the next screen for controlling the speed of the motor. This screen has options for increasing and decreasing the motor speed

SPEEDM.C

and also for exiting from the program. For increasing the speed enter choice 1 and press 'Enter' key, and for decreasing the speed enter choice 2 and press 'Enter' key. This action changes the speed by one step at-a-time and the message "Speed decreased" or "Speed increased" is displayed on the screen. To go to the main menu, again press 'Enter' key.

Note: The source code of the article is included in the CD.

gotoxy(23,13); printf("MOTOR IS RUNNING IN LOW SPEED");

printf("SPEED DECREASED");

clrscr();

getch(); if(c>0)

> clrscr(); c--; outport(P,a[c]); gotoxy(33,13);

getch(); } break:

getch();
exit(1);

for(j=c;j>=0;j--)
{
 outportb(0X0378,j);
 delay(100);
 }
 outportb(P,0);
 clrscr();
 gotoxy(17,13);
 textcolor(2);
 cprintf("KARTHICK.R\nECE\
nK.L.N.COLLEGE OF ENGG\nMADURAI.");

case 3 :

-}

void start()

 $\begin{array}{l} outportb(0x0378,0);\\ for(i=0;i<8;i++)\\ \{\\ outportb(0X0378,i); \end{array}$

	PC"):
//R.KARTHICK,III ECE,K.L.N.C.E.,MADURAI //karthick_klnce@rediffmail.com	f(j=0;j<79;j++)
#include <stdio.h></stdio.h>	101(j=0;j<79;j++)
#include <statio.n></statio.n>	gotoxy(i+1,4);
	gotoxy(j+1,4); printf("*");
int a[7],i,c;	princi(*);
void start(void); void main(void)	}
void main(void)	printf("\n");
	printf("\t\t\t1.INCREASE SPEED\n\t\t
int P=0x0378,j,c=7,c1,x,y;	t2.DECREASE SPEED\n\t\t\t3.EXIT");
clrscr();	for(j=0;j<79;j++)
outportb(P,0);	
textbackground(9);	gotoxy(j+1,8);
textcolor(3);	<pre>printf("*");</pre>
for(x=0;x<=80;x++)	}
for(j=0;j<=25;j++)	for(j=0;j<79;j++)
{	{
gotoxy(x,j);	gotoxy(j+1,10);
cprintf("");	printf("*");
}	}
for(i=0;i<8;i++)	gotoxy(1,9);
a[i]=i;	printf("Enter your choice:");
gotoxy(23,11);	scanf("%d",&c1);
printf("Press Enter to start the motor");	switch(c1)
getch();	{
gotoxy(28,13);	case 1:if(c==7)
printf("WAIT STARTING MOTOR");	
start();	clrscr():
gotoxy(25,15);	gotoxy(23,13);
printf("Motor started sucessfully");	printf("MOTOR IS RUNNING IN
gotoxy(22,17);	FULL SPEED"):
printf("Press any key for speed control");	getch();
getch():	getch();
while(1)	if(c<7)
wille(1)	$\Pi(C < I)$
	{ -]();
clrscr();	clrscr();
gotoxy(25,3);	C++;
for(j=0;j<79;j++)	outport(P,a[c]);
{	gotoxy(33,13);
gotoxy(j+1,2);	printf("SPEED INCREASED");
printf("*");	getch();
}	}
gotoxy(23,3);	break;
printf("DC MOTOR SPEED CONTROL USING	case 2: $if(c==0)$

Derived the set of the

SRINIVAS MARYALA

Here is a low-cost circuit for generating different square-wave sig nals. The circuit is built around a 10MHz crystal oscillator, hex inverter IC 7404 and seven decade counter ICs 7490.

IC 7490 is a 4-bit, ripple-type decade counter. It consists of four master/slave

flip-flops, which are internally connected to form a divide-by-two section and a divide-by-five section. Each section has a separate clock input to change the

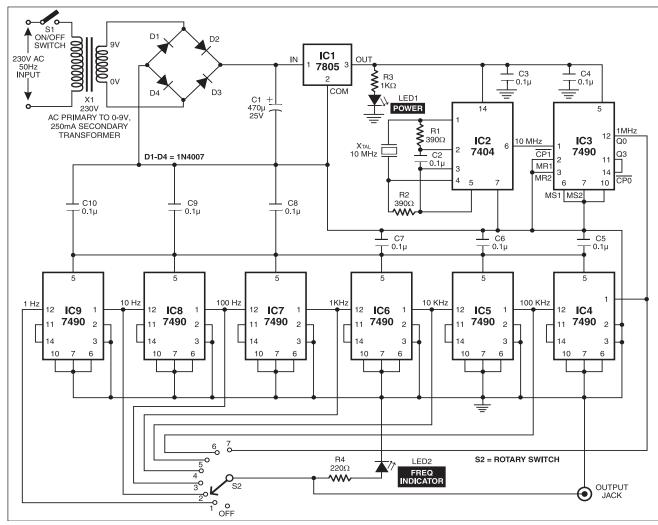


Fig. 1: Circuit of frequency divider using 7490 decade counter

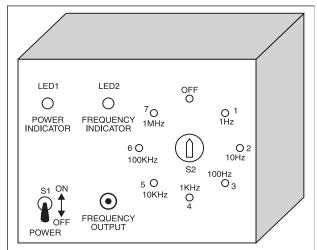


Fig. 2: Proposed control panel for the frequency divider using 7490 decade counter

output states of the counter on a highto-low clock transition. The output states do not change simultaneously due to the internal ripple delays. Therefore the decoded output signals are subject to decoding spikes and should not be used for clocks or strobes.

Since the output of the divide-by-two section is not internally connected to the succeeding stages, IC 7490 can be operated in various counting modes.

In this circuit, ICs 7490 are configured as divide-by-10 counters. The power

supply to the circuit is regulated by IC 7805 (IC1). LED1 indicates power on/off to the circuit. A 10MHz clock

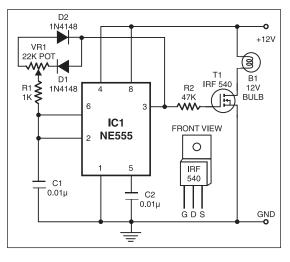
pulse is generated by the crystal and the associated circuit consisting of IC2 (7404). This clock pulse is fed to pin 1 of IC3 (IC 7490), which divides it by 10 to give a 1MHz clock pulse at its output pin 12. The 1MHz clock pulse is fed to the input of the next stage and so on up to IC9.

Thus at all the seven counter stages, we get unique output pulses (1 MHz, 100 kHz, 10 kHz, 1 kHz, 100Hz, 10Hz and 1 Hz, respectively). These output pulses are selected by rotary switch S2 and fed to an output jack. The blinking/ flash rate of LED2 indicates the output frequency. However, you can identify output frequencies of 1 Hz and 10 Hz only. Above 10 Hz, the LED blinks so fast that it's not possible to estimate the frequency.

Assemble the circuit on a generalpurpose PCB and enclose it in a cabinet as shown in Fig. 2.

DOME LAMP DIMMER

T.A. BABU


reading light inside the car greatly assists passengers during night, but often the interior dome lamp is too bright and distracting to the driver. A linear regulator such as a rheostat can be used to control the brightness of the dome lamp but it consumes a lot of power.

Here is a dome lamp dimmer that gives you a fairly linear control over the lamp brightness from low to high intensity while consuming little power. Since it is a pulsewidth modulated chopper circuit, you can also use it to dim a halogen bulb or control the speed of a mini drill, etc.

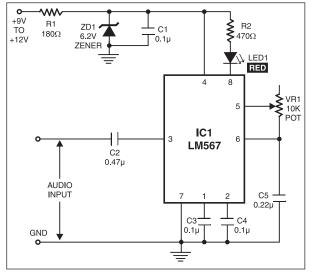
In the circuit, timer NE555 (IC1) is wired as an astable multivibrator to produce square wave at its output pin 3. The output

of timer IC1 charges/discharges capacitor C1 via diodes D1 and D2. Adjust potmeter VR1 to control the RC time constant during the charge-discharge cycle and get the timer output with the desired pulse width. Thus the brightness of lamp B1 can be varied from low to high by adjusting potmeter VR1.

Most cars run only one wire to power the lamp and use the car body for the return current path. Connect ground path of the circuit to the car body. Use a suitable heat-sink for the MOSFET to handle the load current.

OFFSET TUNING INDICATOR FOR CW

D. PRABAKARAN


efore the transceivers became popu-lar, the receiver and the transmitter were separate entities. Zero beating your continuous-wave (CW) transmitter to the called station was a simple matter. When transceivers appeared, difficulties arose. So modifications followed: first, a fixed CW offset of 600-800 Hz was provided. When a signal is tuned in, the local transmitter frequency is near that of the station being received. Next, to make the setting more accurate, a sidetone monitor producing a tone exactly equal to the count of offset appeared in most transceivers. By matching the incoming signal to the sidetone, transmitter frequency would be equal to the received signal frequency. However, matching the two tones is difficult and time-consuming.

Here's an easy-to-build offset tuning indicator for CW that provides a visual indication when the signal and sidetone match. It is built around tone decoder IC LM567, which is an 8-pin PLL IC. A lock between the IC's internal voltage-controlled oscillator (VCO) and the applied signal makes its output pin low. The VCO is set to an offset frequency of 600-800 Hz.

The received audio tone is monitored. When it matches with the frequency of the VCO, a red LED (LED1) turns on. Component values are optimised for the 600-800 Hz range.

For powering the circuit, a 9V or 12V DC source can be used. The operating voltage is regulated to 6.2 volts by zener diode (ZD1).

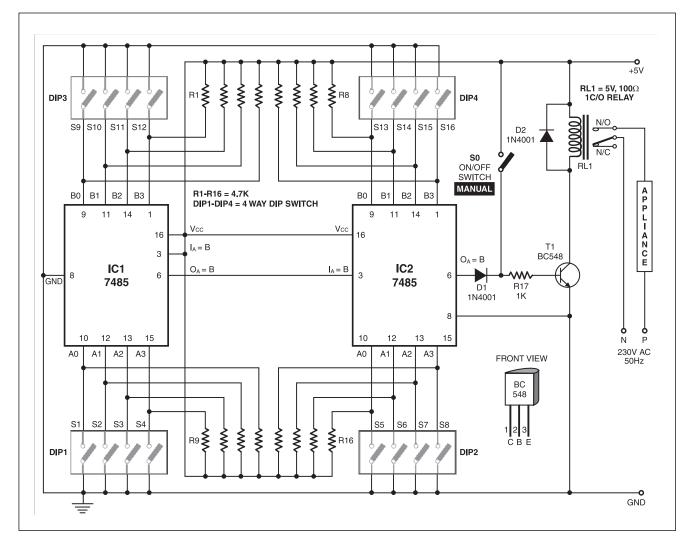
The audio input to the circuit is taken from the speaker or headphone output of the transceiver. One-time adjustment of VCO tuning control VR1 is required. The VCO

must be accurately set to the transceiver offset. With the sidetone activated, adjust VR1 for the maximum LED indication at the lowest level that provides response.

8-DIGIT CODE LOCK FOR APPLIANCE SWITCHING

MANEESH CHADHA

This code lock is useful for appli ances requiring exclusive or au thorised use by those who know the preset code. If desired, the code can be changed.


The circuit doesn't require additional AND or NOT gate operations at the outputs. It uses two pairs of 4-way DIP switches. The code is set using DIP switches DIP3 and DIP4. Then these two switches are hidden inside the assembly. With DIP3 and DIP4, up to 256 code combinations are possible. The unlocking code is set by the user using DIP switches DIP1 and DIP2, which is compared with the preset code entered earlier via DIP3 and DIP4. If the two codes match, transistor T1 conducts.

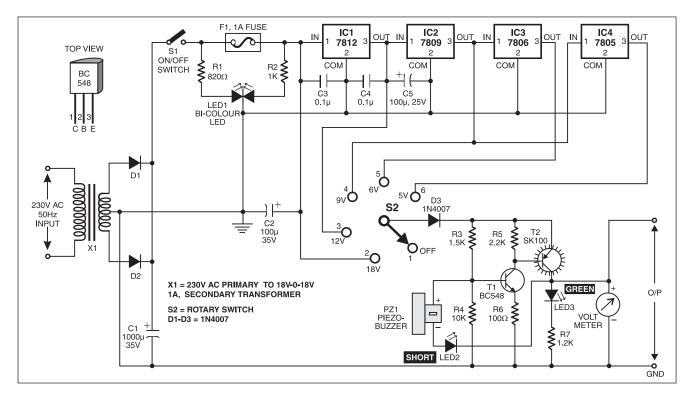
The codes are compared using two cascaded 4-bit magnitude comparator ICs (IC1 and IC2). If the input nibble present at DIP1 matches with preset DIP3 nibble, output pin 6 of IC1 (connected to input pin 3 of IC2) goes high. Now if nibble present at DIP2 matches with the preset nibble at DIP4, pin 6 of IC2 also goes high. This high output drives transistor T1 and the appliance turns on via relay contacts.

After use, disturb the positions of DIP1 and DIP2 so that the appliance can't be operated by unauthorised persons. This will also switch the appliance off.

The circuit works off a 5V DC power supply. Hidden switch S0 can be used to manually turn on/off the appliance if you have forgotten the preset code.

Caution. You may use this code lock at your own risk. After all, a clever intruder will try all 256 possible combinations one after the other to break the secret code.

STABILISED POWER SUPPLY WITH SHORT-CIRCUIT INDICATION


D. MOHAN KUMAR

Here is an efficient 4-stage stabilised power supply unit for test ing elec-tronic circuits. It provides well regulated and stabilised output, which is essential for most electronic circuits to give proper results. The circuit provides an audio-visual indication if there is a short circuit in the PCB under test, so the power supply to the circuit 'under test' can be cut-off immediately to save the valuable components from damage.

The circuit provides four different regulated outputs (12V, 9V, 6V and 5V) and an unregulated 18V output, which are selectable through rotary switch S2. The selected output is indicated on the analogue voltmeter connected to the outputs rails.

The circuit uses a standard 18V-0-18V, 500mA step-down transformer to generate 18V AC. A rectifier diode comprising diodes D1 and D2 provides 18V DC, which is smoothed by capacitor C1 and given to the combination of regulator ICs (IC1 through IC4). The regulator ICs produce fixed, regulated outputs of 12V, 9V, 6V and 5V, respectively, which are connected to the rotary switch contacts. This power supply is useful for loads requiring up to 200mA current.

Complementary transistors T1 and T2 conduct when the power to the circuit is switched on. Full selected supply voltage is available at the collector of transistor T2, which is used to power the load. LED3 indicates the presence of output voltage. The negative terminal of piezobuzzer PZ1 is connected to the output rail via LED2, so the piezobuzzer remains silent as its negative terminal is also at full supply voltage (selected). If there is a short circuit at the output, LED2 glows to activate the

piezobuzzer.

A fuse-failure indicator distinguishes short circuit at the output and input failure. It consists of a bicolour LED (LED1) and resistors R1 and R2. When power is available and the fuse is intact, red and green halves of LED1 are effectively in parallel to output a yellowish light. When fuse fails, green LED goes off and red LED lights up to indicate fuse breakdown.

The circuit can be easily constructed

on a general-purpose PCB. Use small heat-sinks for all ICs to dissipate heat. The output voltage can be read on a voltmeter. Enclose the circuit in a metal box with provisions for voltmeter, LEDs, rotary switch, etc.

LIGHT-OPERATED INTERNAL DOOR LATCH

V. GOPALAKRISHNAN

Sing this light-operated circuit, you can close or open the door of your room remotely from your bed. You just have to focus the torchlight on the light-dependent resistor of the circuit, which you can install inside your room at a suitable position. The circuit comprises a control unit and a driver unit for the stepper motor circuit used to latch/open the door.

The control unit comprises two timer 555 ICs (IC1 and IC2), NAND gate IC (IC3), 4-bit bidirectional universal shift register (IC4), OR gate (IC5), NOR gate

(IC6), hex inverter (IC7) and dual D-type positive-edge triggered flip-flop (IC8) as shown in Fig. 1. The driver circuit shown in Fig. 2 uses four Darlington pair transistors (T1 through T8) to increase the current carrying capability for operating the stepper motor.

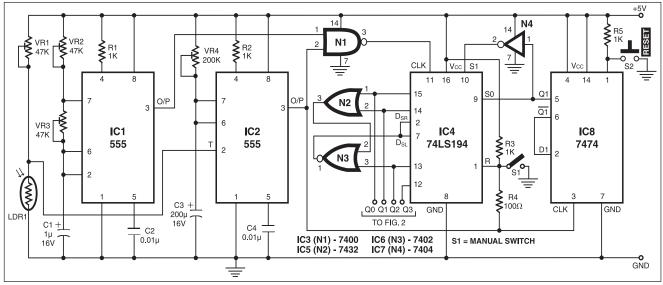


Fig. 1: Circuit of the control unit

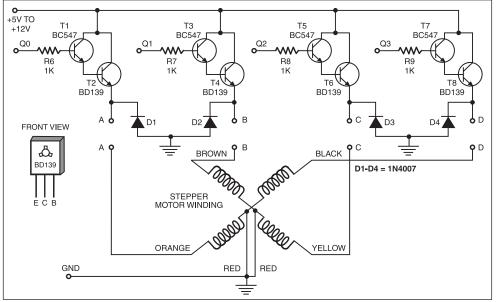


Fig. 2: Driver circuit for the stepper motor

The astable multivibrator built around timer 555 (IC1) has a time period of 1.5 seconds. The monostable built around IC2 is triggered when torchlight is focused on light-dependent resistor LDR1. Sensitivity potentiometer VR1 is adjusted to ambient light. Normally, the LDR is kept covered to avoid its activation by ambient light.

When torchlight is focused on the LDR, the monostable (IC2) is triggered. The 'on' time of IC2 is adjusted to 15 seconds by potentiometer VR4. The outputs at pin 3 of astable IC1 and monostable IC2 are fed to NAND gate N1 of IC3. The Q0 and Q1 outputs of shift register IC4 are ORed by OR gate N2 and its output

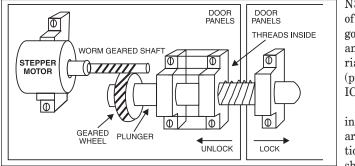


Fig. 3: Mechanical arrangement for the lock

C11 + 0	D	<u> </u>	***
Shift	Register	Output	Waveform

	. –	. –		
Clock	Q3	Q2	Q1	Q0
1	0	0	0	1
2	0	0	1	0
3	0	1	0	0
4	1	0	0	0

is fed to NOR gate N3. The Q2 output of IC4 forms the second input for NOR gate

N3. The output of NOR gate N3 goes to shift-right and shift-left serial data inputs (pins 2 and 7) of IC4. Mode-control inputs S0 and S1

are used for direction changing of shift register IC4. The Q1 output of dual D-type flip-

flop IC8 is fed to S0 directly and to S1 after inversion by N4.

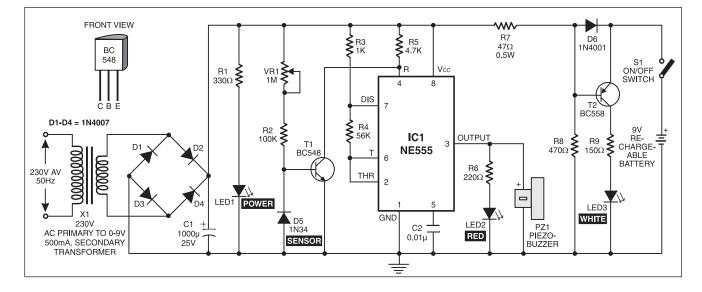
The output of monostable IC2 resets IC4 via resistor R4, which stops the stepper motor. You can also manually stop the stepper motor by pushing switch S1 to 'on' position.

Switch S2 is used for resetting dual D-type flip-flop IC8. The monostable output also provides clock to the D flip-flop operating in toggle mode by connecting

Q1 to D1 of IC8.

Fig. 2 shows the driver unit for the stepper motor, along with windings details of the stepper motor. Connect Q0 through Q3 outputs of IC4 in the control unit (Fig. 1) to positive and ground power supply terminals of the driver unit (Fig. 2). The waveform drive pattern of shift outputs of IC4 is shown in the table.

When you direct torchlight on the LDR, the stepper motor runs in one direction to latch the door. If you again focus torchlight on the LDR, the stepper motor runs in reverse direction to open the latch.


Fig. 3 shows the locking arrangement operated by the stepper motor.

Note. During testing at EFY lab, a stepper motor for read/write head positioning in a 1.2MB floppy disk drive unit, operating off 12V with 3.6-degree revolution per step, was used. Connect the coloured terminal wires of the motor to the driver unit as shown in Fig. 2.

MAINS BOX HEAT MONITOR

D. MOHAN KUMAR

This simple circuit monitors the mains distribution box constantly and sounds an alarm when it senses a high temperature due to overheating, helping to prevent disasters caused by any sparking in the mains box due to short circuits. It also automatically switches on a bright white LED when the power fails. The LED gives ample light to check the mains box wiring or fuses in darkness. The circuit beeps once when power fails and again when power resumes. The AC mains is stepped down by transformer X1 to deliver a secondary output of 9V AC at 500 mA. The transformer output is rectified by diodes D1 through D4. Capacitor C1 bypasses the ripple. LED1 indicates the power-on condition.

Resistor R1 acts as the current limiter for LED1.

Germanium diode D5 (1N34) is the temperature-sensing element, which is connected in the reverse bias mode. At normal temperature, the resistance of the diode is high and, as a result, transistor T1 conducts to hold reset pin 4 of IC1 in low state.

NE555 (IC1) is wired as an astable multivibrator. When the temperature around diode D5 rises due to overheating of the fuse, the resistance of the diode decreases and transistor T1 stops conducting. This enables IC1 and the oscillator starts to sound an alarm. By adjusting preset VR1, you can set the temperature level at which the alarm circuit is activated.

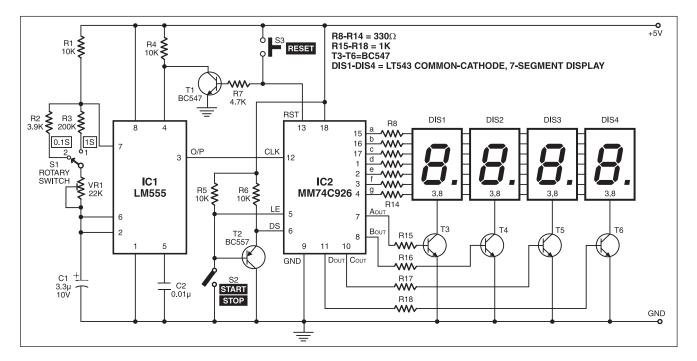
The emergency light circuit uses pnp transistor BC558 (T2) and a few passive components. It is powered by a 9V rechargeable battery, which is constantly charged via forward-biased diode D6 when mains power is present. Resistor R7 reduces the charging current to a safer level. The forward biasing of diode D6 results in reverse biasing of transistor T2 and thus the white LED (LED3) is off. When the power fails, transistor T2 is forward biased and lights up the LED. When the power resumes, transistor T2 stops conducting and the LED doesn't glow.

The circuit can be easily constructed on any general-purpose PCB. Diode D5 should be placed close to the fuse to sense the heat. It can be connected to the PCB using a short piece of shielded wire. The white LED should be directed towards the fuse such that the maximum light falls on the fuse.

To test the circuit, take the hot tip of the soldering iron near diode D5. The buzzer will sound to indicate the high temperature.

DIGITAL STOP WATCH

There's a digital stop watch built around timer IC LM555 and 4digit counter IC with multiplexed 7-segment output drivers (MM74C926).


IC MM74C926 consists of a 4-digit counter, an internal output latch, npn output sourcing drivers for commoncathode, 7-segment display and an internal multiplexing circuitry with four multiplexing outputs. The multiplexing circuit has its own free running oscillator, and requires no external clock.

C.H. VITHALANI

The counter advances on negative edge of the clock. The clock is generated by timer IC LM555 (IC1) and applied to pin 12 of IC2.

A high signal on reset pin 13 of IC2 resets the counter to zero. Reset pin 13 is connected to +5V through reset push-on-switch S3. When S2 is momentarily pressed, the count value becomes 0, transistor T1 conducts and it resets IC1. Counting starts when S2 is in 'off condition.

A low signal on the latch-enable input pin 5 (LE) of IC2 latches the number in the counter into the internal output latches. When switch S2 is pressed, pin 5 goes low and hence the count value gets stored in the latch. Display-select pin 6 (DS) decides whether the number on the counter or the number stored in the latch is to be displayed. If pin 6 is low the number in the output latch is displayed, and if pin 6 is high the number in the counter is displayed.

When switch S2 is pressed, the base of pnp transistor T2 is connected to ground and it starts conducting. The emitter of T2 is connected to DS pin of IC2. Thus, when switch S3 is pressed, reset pin 13 of IC2 is connected to ground via transistor T1 and the oscillator does not generate clock pulses. This is done to achieve synchronisation between IC1 and IC2.

First, reset the circuit so that the display shows '0000.' Now open switch S2 for the stop watch to start counting the time. If you want to stop the clock, close switch S2.

Rotary switch S1 is used to select the different time periods at the output of the astable multivibrator (IC1). The circuit works off a 5V power supply. It can be easily assembled on a general-purpose PCB. Enclose the circuit in a metal box with provisions for four 7-segment displays, rotary switch S1, start/stop switch S2 and reset switch S3 in the front panel of the box.

Astable multivibrator IC3 produces

approximately 8.4Hz clock, which is

given to transistor T4 via resistor R9 to

switch on the supply to transistors T1

through T3 for each positive half cycle of

FLASHING-CUM-RUNNING LIGHT

A. SIVASUBRAMANIAN

his circuit generates flashing lights in running pattern. In conven tional running lights, the LEDs glow one by one. In this circuit, the LEDs flash a number of times one by one.

The circuit comprises two astable multivibrators (IC1 and IC3) and a decade counter (IC2). Astable multivibrator IC1 produces approximately 0.72Hz clock frequencies, which are given to decade counter IC2. The decade counter

₹ R1 820Ω

DIS

2

IC1

NE555

O/P

CLK

З

C2

0.01u

₹100K

THR 6

C1 +

10µ 35V

is designed to count Q0, Q1 and Q2 outputs, while its fourth output (Q3) is used to reset it. The Q0, Q1 and Q2 outputs of IC2 are fed to npn transistors T1, T2 and T3, respectively. The collectors of transistors T1, T2 and T3 are connected to the emitter of transistor T4, while their emitters are connected to LED1, LED2 and LED3 via 150-ohm resistors R6, R7 and R8, respectively. The LEDs are activated one by one by the decade

R9 10K≸

R8

1500

R3-R5 = 10K T1-T4 = BC547

 \sim

R4 Q1 2

> R5 Q2

> > R6 ş R7

1500

LED

^{H7} 150Ω

LED2 LED

.....

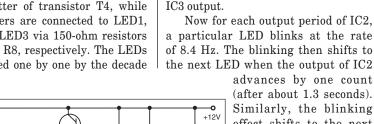
3

4

15

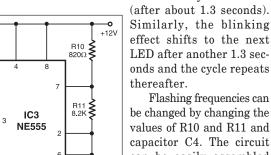
STROBE

Q3


Vcc

IC2

4017


7

GND

СЗ

0.01u

C4 +

GND

10µ

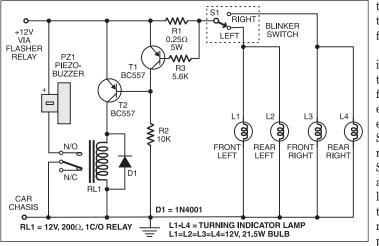
35V

counter outputs.

be changed by changing the values of R10 and R11 and capacitor C4. The circuit can be easily assembled on any general-purpose PCB. It works off a 12V regulated power supply. You can also add more LEDs in series with LED1. LED2 and LED3, respectively.

FAULTY CAR INDICATOR ALARM

DEBARAJ KEOT


Before taking a turn, either left or right, car drivers need to switch on the car's turn-indicator lamps so that the approaching vehicle drivers can take precaution accordingly. An accident is likely to occur in case your car's turn-indicator lamps fail to glow due to some reason or the other. Here's a circuit that sounds an alarm if your turn-indicator lamps don't glow, helping you to safeguard against any accident.

When both the the front and rear

turn-indicator lamps (either right or left) glow, the current through the lamps (L1-L2 or L3-L4) causes a voltage drop across series resistor R1. This voltage drives pnp transistor T1 into saturation. In this condition, pnp transistor T2 does not conduct and hence relay RL1 does not energise. No sound from piezobuzzer PZ1 (connected to normally-opened (N/O) contacts of relay RL1)

means that the turn-indicator lamps are working satisfactorily.

When one or both of the turn-indicator bulbs are fused, the voltage drop

across R1 is insufficient and pnp transistor T1 remains cut-off. In this condition, pnp transistor T2 conducts to energise relay RL1 and piezobuzzer PZ1 sounds to indicate that one or both the turn-indicator bulbs are fused.

Install the circuit (excluding turn-indicator lamps L1 through L4, which are already fitted in your car) near the driver's seat so that the driver has easy access to blinker switch S1. To turn left, the driver needs to connect blinker switch S1 to left position to flash front and back left-turn-indicator lamps (L1 and L2). Similarly, to turn right, he needs to connect blinker switch S1 to right position to flash front and back right-turn indicator lamps (L3

and L4).

The value of resistor R1 is to be changed according to the bulb wattages.

QUALITY FM TRANSMITTER

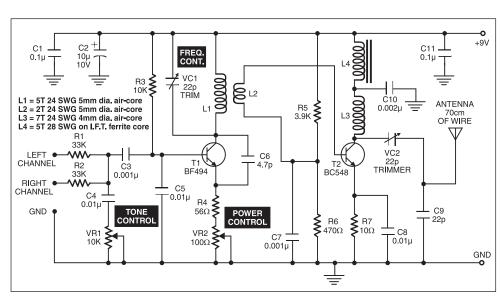
TAPAN KUMAR MAHARANA

This FM transmitter for your stereo or any other amplifier provides a good signal strength up to a distance of 500 metres with a power output of about 200 mW. It works off a 9V battery.

The audio-frequency modulation stage is built around transistor BF494 (T1), which is wired as a VHF oscillator and modulates the audio signal present at the base. Using preset VR1, you can adjust the audio signal level. The VHF frequency is decided by coil L1 and variable capacitor VC1. Reduce the value of VR2 to have a greater power output.

The next stage is built around transistor BC548 (T2), which serves as a Class-A power amplifier. This stage is inductively coupled to the audio-frequency modulation stage. The antenna matching network consists of variable capacitor VC2 and capacitor C9. Adjust VC2 for the maximum transmission of power or signal strength at the receiver.

For frequency stability, use a regulated DC power supply and house the transmitter inside a metallic cabinet.


For higher antenna gain, use a telescopic antenna in place of the simple wire. Coils L1 and L2 are to be wound over the same air core such that windings for coil L2 start from the end point for coil L1. Coil winding details are given below:

L1: 5 turns of 24 SWG wire closely wound over a 5mm dia. air core

L2: 2 turns of 24 SWG wire closely wound over the 5mm dia. air core

L3: 7 turns of 24 SWG wire closely wound over a 4mm dia. air core

L4: 5 turns of 28 SWG wire on an intermediate-frequency transmitter (IFT) ferrite core

SIMPLE KEY-OPERATED GATE LOCKING SYSTEM

DIPANJAN BHATTACHARJEE

his simple key-operated gate locking system allows only those persons who know the preset code to open the gate. The code is to be entered from the keypad within the preset time to operate the motor fitted in the gate. If anyone trying to open the gate presses a wrong key in the keypad, the system is disabled and, at the same time, sounds an alarm to alert you of an unauthorised entry.

Figs 1 and 2 show the block and circuit diagrams of the key-operated code locking system, respectively. Connect points A, B, C, D, E, F and ground of the circuit to the respective points of the keypad. Keys S7, S16, S14 and S3 are used here for code entry, and the remaining keys are used for disabling the system. It is very important to press the keys in that order to form the code. To start the motor of the gate, press switches S7, S16, S14 and S3 sequentially. If the keys are pressed in a different order from the preset order, the system will lock automatically and the motor will not start

Initially, 6V is not AND gate IC6, so no pulse

reaches the base of npn transistor T1 to trigger timer IC5 and, as a result, the gate doesn't open. To enable the system, first you have to trigger IC4. Pressing switch S7 triggers timer IC4 to provide 6V to IC6 for approximately 17 seconds. Within this time, you have to press switches S16, S14 and S3 sequentially. As a result, the outputs of timers IC1, IC2 and IC3 sequentially go high. These high outputs are further given to gates N1 and N2 of IC6 to trigger IC7 via npn

ENABLING

SECTION

ALARM

SECTION

KEYPAD

DISABLING

SECTION

transistor T1. The time durations for the high outputs of IC1, IC2 and IC3 are preset at 13.5, 9.43 and 2.42 seconds, respectively.

CONTROL

GATE SYSTEM

SYSTEM

LOCK

MOTOR

ON

MOTOR

OFF

When all the four switches (S7, S16, S14 and S3) are pressed sequentially, timer IC7 triggers to start the motor for the preset period to open the gate. Once the time elapses, the motor stops automatically. The 'on' time for the motor can be selected by adjusting preset VR5. Here, the minimum 'on' time is

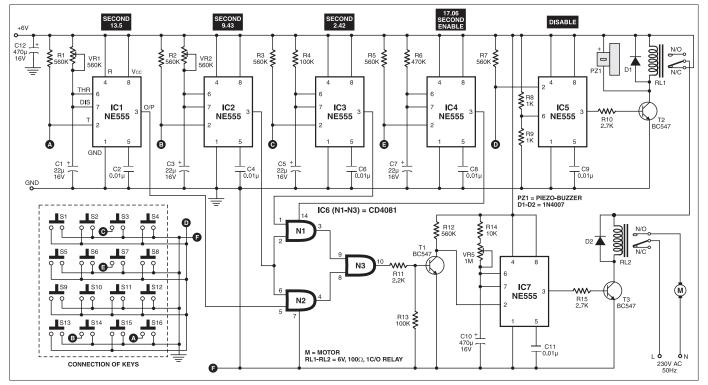


Fig. 2: Circuit of simple key-operated gate locking system

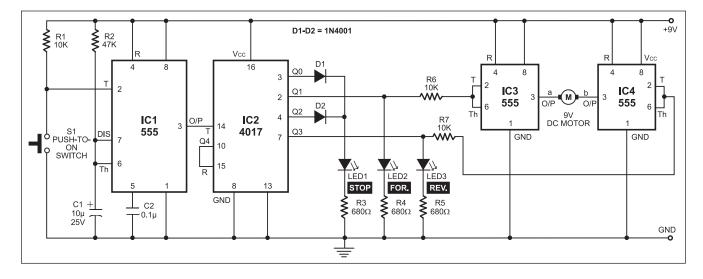
5.17 seconds and the maximum 'on' time is 517 seconds.

If a switch other than S7, S16, S14 and S3 is pressed, IC5 triggers to energise relay RL1, which disconnects the power supply of the second relay and the system gets locked and piezobuzzer PZ1 sounds an alarm to alert you that somebody is trying to open the gate lock.

Now to stop the sound and reset the

system again press any key (other than S7, S16, S14 and S3) from the keypad.

The circuit works off 6V DC regulated power supply and can be easily assembled on a general-purpose PCB.


DC MOTOR CONTROL USING A SINGLE SWITCH

V. DAVID

This simple circuit lets you run a DC motor in clockwise or anticlockwise direction and stop it using a single switch. It provides a constant voltage for proper operation of the motor. The glowing of LED1 through LED3 indicates that the motor is in stop, forward rotation and reverse conditions, respectively.

Here, timer IC1 is wired as a monostable multivibrator to avoid false triggering of the motor while pressing switch S1. Its time period is approximately 500 milliseconds (ms).

Suppose, initially, the circuit is in reset condition with Q0 output of IC2 being high. Since Q1 and Q3 outputs of IC2 are low, the outputs of IC3 and IC4 are

high and the motor doesn't rotate. LED1 glows to indicate that the motor is in stop condition.

When you momentarily press switch S1, timer 555 (IC1) provides a pulse to decade counter CD4017 (IC2), which advances its output by one and its high state shifts from Q0 to Q1. When Q1 goes high, the output of IC3 at pin 3 goes low, so the motor starts running in clockwise (forward) direction. LED2 glows to indicate that the motor is running in forward direction.

Now if you press S1 again, the high output of IC2 shifts from Q1 to Q2. The low Q1 output of IC2 makes pin 3 of IC3 high and the motor doesn't rotate. LED1 glows (via diode D2) to indicate that the motor is in stop condition.

Pressing switch S1 once again shifts the high output of IC2 from Q2 to Q3. The high Q3 output of IC2 makes pin 3 of IC4 low and the motor starts running in anticlockwise (reverse) direction. LED3 glows to indicate that the motor is running in reverse direction.

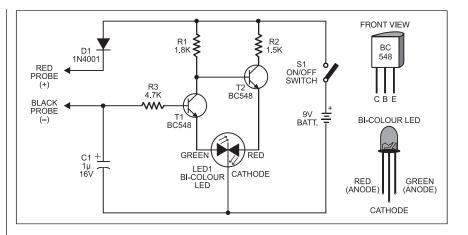
If you press S1 again, the high output of IC2 shifts from Q3 to Q4. Since Q4 is connected to reset pin 15, it resets decade counter CD4017 and its Q0 output goes high, so the motor does not rotate. LED1 glows via diode D1 to indicate that the motor is in stop condition. Thereafter, the cycle repeats.

If you don't want to operate the motor in reverse direction, remove timer IC4 along with resistors R5 and R7 and LED3. And connect 'b' terminal of the motor to +Vcc.

Similarly, if you don't want to run the motor in forward direction, remove timer IC3 along with resistors R4 and R6 and LED2. And connect 'a' terminal of the motor to +Vcc.

The circuit works off a 9V regulated power supply for a 9V DC motor. Use a 6V regulated power supply for a 6V DC motor.

HANDY TESTER


D. MOHAN KUMAR

ronic components from resistors to ICs. It uses only a few components but can also detect polarity, continuity, logic states and activity of multivibrators.

The circuit is extremely simple and exploits the biasing property of bipolar transistors. Transistors T1 and T2 act as transistor switches driving the red and green halves of bicolour LED1 independently to give results of the test.

When power is applied by pressing switch S1, transistor T1 stops conducting due to the lack of forward bias. At the same time, transistor T2 takes base bias voltage from the battery through resistor R1 and conducts. This allows the red half of bicolour LED1 to illuminate.

When the base of transistor T1 gets

positive voltage through resistor R3, it conducts to light up the green half of bicolour LED1. When transistor T1 conducts, the base of transistor T2 is grounded and it cuts off to turn off the red half of bicolour LED1. The functioning of the circuit thus depends on the signal obtained at the base of transistor T1. The table gives the testing procedures for various components with the expected indications/results.

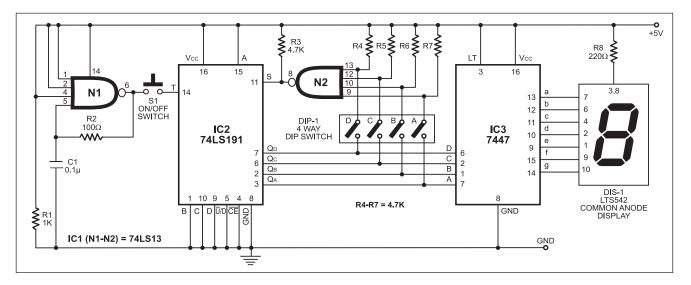
Bi-Colour LED Status for Various Tests

	DI-OOIOUI LED State				
Component/test	Test procedure	LED1 status	Result	Note	
Continuity	Red and black probes to the test points	Green 'on'	Continuity		
		Red 'on'	No continuity		
Polarity	Red probe to the positive of the circuit and	Green 'on'	Positive	Circuit should be 'on'	
	black probe to the test point	Red 'on'	Negative or no power		
Logic	Red probe to the circuit's positive and black	Green 'on'	High	Circuit should be 'on'	
	probe to the output	Red 'on'	Low		
IC	Red probe to the circuit's positive and black	Green 'on'	High	Circuit should be 'on'	
	probe to the output	Red 'on'	Low		
Multivibrator IC 555	Red probe to the circuit's positive and black	Colour changes	IC oscillating	Circuit should be 'on'	
	probe to the output	from red to yellow			
		to green cyclically	AT 11		
		Red 'on'	No oscillation		
Electrolytic capacitor	Red probe to the positive and black probe	Green gradually	Capacitor good	Capacitor should be	
Diode (LED/	to the negative lead	turns red Red 'on' Green 'on'	Capacitor faulty	discharged 1-kilo-ohm resistor	
Photodiode/IR diode)	Red probe to the anode and black probe to the cathode	Green on	Good	should be connected	
1 notouroue/int uroue)	Red probe to the cathode and black probe	Red 'on'	Jaoou	to the anode of LEDs	
	to the anode		-		
	In both conditions	Colour remains the	Open/short		
		same (either green			
		or red)			
Resistor (1 ohm to	Red and black probes to the ends of the resistor	Green 'on'	Good		
500 kilo-ohms)		Red 'on'	Faulty		
Transistor	Red probe to the base of the transistor and black	Green 'on' and again	Transistor conducts	Circuit should be 'on'	
	probe first to the collector and then to the emitter	green 'on'			
	Black probe to the base of the transistor and red	Green 'on' and then	Transistor doesn't		
	probe first to the collector and then to the emitter	red 'on'	conduct		

PROGRAMMABLE ELECTRONIC DICE

MANEESH CHADHA

Here's a simple programmable electronic dice with numeric display. This dice can be programmed using a 4-way DIP switch to display any random number between '1' and '2,' '1' and '3,' or '1' and '9.'


To obtain the desired dice range, inner switches A, B, C and D of DIP switch are to be set as per the table. For example, if you want the electronic dice to count from 1 to 8, close switches A and D and keep B and C open. On pressing switch S1, the display varies fast between '1' and '8.' When you release S1, the display stops shuffling and the last (latest) number remains on it.

IC1 is a dual 4-input Schmitt trigger NAND gate 74LS13. Gate N1 is used as an oscillator built using resistor R2 and capacitor C1 to produce approximately 70kHz clock frequency, which is fed to IC2. Gate N2 loads data at the inputs of IC2.

IC2 is a presettable binary counter (74LS191) with parallel loading facility. Whenever its pin 11 goes low, the data present at its inputs D through

Setting of the 4-way DIP Switch For Display Ranges

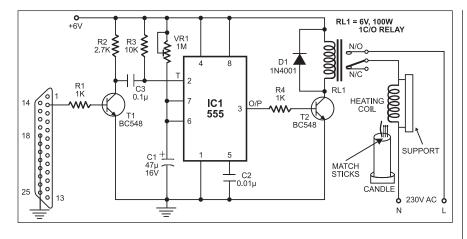
Dice range	Close the inner Switch	Open the inner switch
1 to 2	B and A	D and C
1 to 3	C only	A, B and D
1 to 4	A and C	B and D
1 to 5	B and C	A and D
1 to 6	A, B, and C	D only
1 to 7	D only	A, B and C
1 to 8	A and D	B and C
1 to 9	B and D	A and C

A (which is '0001') appears at its outputs Q_D through Q_A when all the inner switches of DIP switch are open and DIS1 shows the minimum count as '1' (and not '0').

With inner switches of DIP switch in

positions shown in the table, the count output can go from '0001' to the maximum count shown under 'Dice Range' in the table when switch S1 is depressed. On releasing switch S1, the last count within the dice range gets displayed. The outputs of IC2 are displayed on common-anode, 7-segment display LTS542 (DIS1). BCD-to-7-segment decoder IC 7447 (IC3) is used to drive the display. Resistor R8 limits the current through DIS1.

PC-BASED CANDLE IGNITOR


Here's a PC-based lighting system that lets you light up a candle us-ing matchsticks by just pressing the 'Enter' key on the PC's keyboard. It is especially useful when celebrating

R. KARTHICK

such occasions as birthdays and anniversaries.

The number of matchsticks required to light up the candle is placed on the candle (alongside its wick) as shown in the figure. The heating coil for igniting the matchsticks is kept near them.

The interface circuitry between the PC and the heating coil for the candle-matchsticks arrangement comprises an inverter,

monostable and relay driver. Transistor BC548 (T1) acts as the inverter, IC 555 (IC1) is configured as the monostable circuit and transistor SL100 (T2) is the relay driver.

When you press 'Enter' key on the keyboard, the inverted output at the collector of transistor T1 goes low to trigger IC1 through its pin 2. Output pin 3 of the monostable goes high and transistor T2 conducts for around 50 seconds.

The conduction of transistor T2 energises relay RL1, which, in turn, connects the heating coil to 230V AC through the normally opened (N/O) contact. In place of the heating coil, you can also use an electric cigarrette lighter. The heating coil becomes

DEEPAM.C

red hot when connected across the 230V AC and ignites the matchsticks. The flames of the matchsticks light up the candle.

The program, written in 'C' language, is simple and easy to understand. The parallel-port D-type female connector normally available on the back of the PC is used for outputting the data to the interfacing circuitry. The address 378H of parallel-port LPT1 is used in the program. The parallel-port pin 2 corresponding to data bit D0 sends the control signal to energise the relay, which, in turn, connects the load to AC mains.

This circuit uses only one output of the PC's parallel port to light up the candle, but it can be extended to light up up to eight *diyas*/candles in *thiruvillaku* (as called in South India) by using eight outputs with a slight change in the program and adding seven similar circuits.

Note: The source code of this article is included in the CD.

/* PC Based Lighting System */ #include<stdio.h> #include<conio.h> #include<stdlib.h> void main() { int n; clrscr(); outportb(0x0378.0); _setcursortype(_NOCURSOR); randomize(); textcolor(2); gotoxy(40,25); cprintf("By KARTHI,K.L.N.COLLEGE OF ENGG,Madurai"); while(!kbhit()) { n=random(10);

textcolor(n); gotoxy(23,13); cprintf("Press enter to light up the DEEPAM"); delay(100); } outportb(0x0378,1); getch(); getch();

SOLIDSTATE REMOTE CONTROL SWITCH

SEEMANT SINGH

Here is a solidstate remote control switch which uses readily available electronic components. The control circuit comprises the transmitter and receiver sections. The range of the transmitter is around seven metres.

The transmitter circuit (shown in Fig. 1) is built around a timer IC (555) wired as an astable multivibrator. It works off a 9V battery. When remote control switch S1 is pressed, the astable multivibrator built around IC1 starts oscillating at a frequency of about 38 kHz. The signal frequency at output pin 3 of IC1 is transmitted through two infrared diodes (IR LED1 and IR LED2). A green LED (LED1) connected to pin 3 glows whenever S1 is pressed, indicating the presence of a signal for transmission at the output of the multivibrator.

The output frequency F at pin 3 of IC1 depends on the timing components, viz, resistors R1 and R2 and capacitor C2. It is given by the following relationship:

F = 1.443/(R1+2R2)C2

This frequency is fed to npn transistors T1 and T2 (each BC547) through resistor R4 (470-ohm) to drive the IR LEDs. Resistor R5 limits the current flowing through the IR LEDs.

The receiver circuit (shown in Fig. 2) consists of regulator IC 7806 (IC4), IR receiver module (TSOP1738), timer 555 (IC2) and decade counter CD4017 (IC3). Timer 555 (IC2) is wired as a monostable multivibrator.

The 9V DC power supply for the receiver circuit is regulated by reg-

ulator IC 7806. The presence of power in the circuit is indicated by glowing of the red LED (LED2).

The IR receiver module (TSOP1738), which gets 5.1V power supply through zener diode ZD1, receives the transmitted signal of about 38 kHz. The signal is amplified by transistor BC558 (T3) and given to triggering pin 2 of IC2 through

pin 2 of IC2 through Fig. 1: Transmitter circuit

of the green LED (LED3).

The output of IC2 is given to the clock input (pin 14) of IC3. Here, IC3 is wired as a bistable circuit. For every clock input, pins 2 and 3 of IC3 alternately go high.

Initially, when the power to the receiver circuit is switched on, pin 3 of IC3 is high and therefore the yellow LED (LED4) connected to it glows. The glowing of LED4 indicates that the appliance is in 'off' condition.

When a clock pulse is received at pin 14 of IC3, pin 3 goes low to turn off LED4, while pin 2 becomes high. The high output at pin 2 triggers the gate of

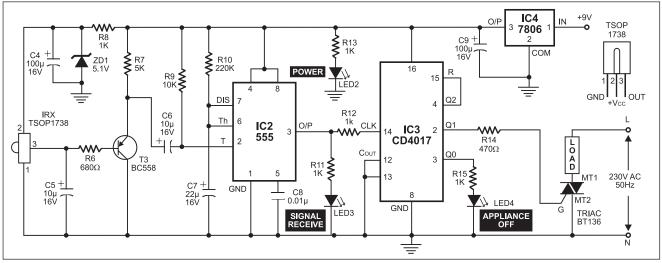


Fig. 2: Receiver circuit

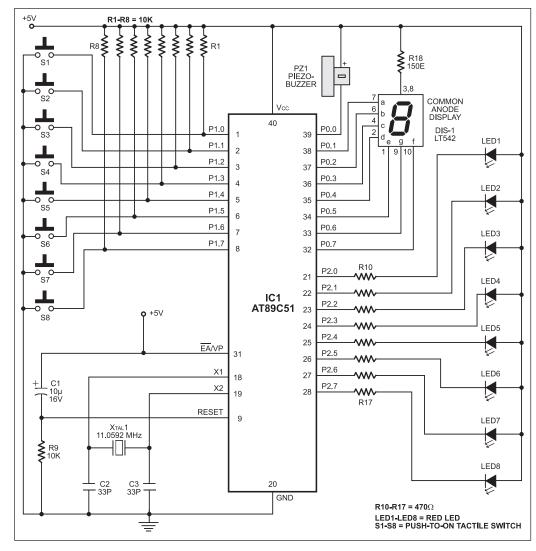
coupling capacitor C6.

Initially, when no signal is received from the transmitter, the output of the IR receiver module is high (approx. 5V).

When the transmitter is pointed at the receiver and switch S1 is momentarily pressed, the transmitted IR rays are sensed by the receiver module and its output pulses low to trigger the monostable (IC2). The output of IC2 goes high for about five seconds. Thus, even if you press the remote switch more than one time by mistake, there won't be any change in the output of the receiver within this period and hence no undesired switching of the appliance. The signal reception is indicated by glowing triac BT136, which, in turn, controls the appliance.

Precautions. Don't touch the leads of the triac as it is connected across the 230V AC mains. Also, make sure that the neutral point of mains is connected to the ground line of the circuit and not vice versa.

MICROCONTROLLER-BASED MONITORING SYSTEM


MANEESH CHADHA

n establishments such as small ho tels, small offices and clinics, inter coms or calling bells prove to be a costlier option for communication between inmates and the assisting staff since such a provision can be made only for a limited

number of points. Here's a simple and economical room-monitoring system that provides audio-visual identification of

Codes for Display Generation along with RAM Locations for Their Storage

					0						
LT542 pin no.	10	9	1	2	4	6	7	Buzzer	Hexa-	RAM	
LT542 segment		g	F	е	D	С	В	A	input	decimal	memory
Inputs	Display	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	Code	Location
S1(P1.0)	1	1	1	1	1	0	0	1	0	F2H	68H
S2(P1.1)	2	0	1	0	0	1	0	0	0	48H	67H
S3(P1.2)	3	0	1	1	0	0	0	0	0	60H	66H
S4(P1.3)	4	0	0	1	1	0	0	1	0	32H	65H
S5(P1.4)	5	0	0	1	0	0	1	0	0	24H	64H
S6(P1.5)	6	0	0	0	0	0	1	0	0	04H	63H
S7(P1.6)	7	1	0	1	1	0	0	0	0	0BH	62H
S8(P1.7)	8	0	0	0	0	0	0	0	0	00H	61H

R1 through R8 are pull-up resistors, while resistors R10 through R17 are current-limiting resistors. Other passive components constitute the reset and clock circuitry for operating the microcontroller.

When any of the switches is pressed, the corresponding call-point number is displayed on 7segment, common-anode display DIS1 (LTS542) in the control room. This display is directly interfaced to output port 0 (pins P0.1 through P0.7) of controller IC1. Port pin P0.0 is connected to piezobuzzer PZ1, which sounds to indicate that someone needs help.

The audio-visual indication continues for a few seconds. During this time, if any other switch is also pressed, the controller doesn't recognise that request but gives busy signal to all the eight LEDs connected at its output port 2. As a result, irrespective of any switch being pressed, all the LEDs connected to the controller start blinking for this duration, so a caller gets to know that he

the call point. The system also provides feedback to the caller (in the form of busy signal). Using minimal hardware and software, it's a clean and easy way to communicate.

Flash-based microcontroller IC AT89C51 (IC1) is at the heart of the monitoring circuit. Ports 0, 1 and 2 of

IC1 are used as output, input and output ports, respectively. Switches S1 through S8 are interfaced as inputs to controller IC1 via port 1 (p1.0 through p1.7). These switches, along with the respective LEDs, are to be installed in eight different rooms, while the remaining circuit is to be placed in the control room. Resistors has to wait for some time. When the LED stops blinking, he can press the switch for help. The LED again blinks to indicate that the request is being processed.

Written in Assembly language, the program for the microcontroller (MS. ASM) is simple and easy to understand. It is given at the end of the article. The table provides codes for generating the 7-segment display and the RAM locations of the microcon-troller where these are to be stored.

The complete Assembly program can be written using any text editor. Save the file as 'MS.ASM.' Generate the hex file (MS.HEX) by using the ASM51.EXE assembler. (This assembler was included in EFY-CD of March 2003 issue at path 'E:\Software \Efysoftware\TEMar03\ 89C51Pgmr\Test Setup.') The complete procedure can be summarised as:

 $1.\,{\rm Program}$ the micro-controller with the MS.HEX file using AT89C51 programmer.

2. After successfully programming the code, take the microcontroller out from the programmer and connect it to its IC base on the PCB of the circuit.

3. After assembling and soldering all other components, connect a 5V DC external power supply.

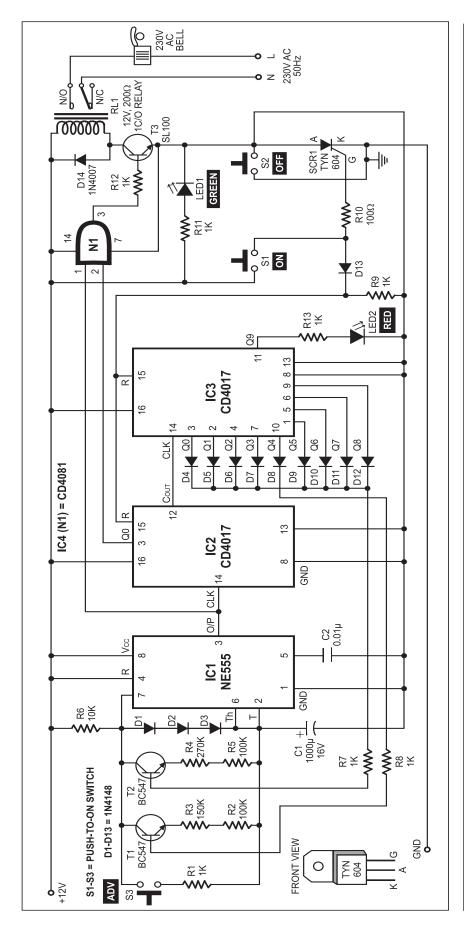
4. Now if you press any switch, the

corresponding call-point number should display for a few seconds. At the same time, LEDs at all the call points should blink and the buzzer in the control room should sound for this duration.

5. If the kit is working properly, install the main unit with 7-segment display and buzzer in the control room and all the eight switches with LEDs beside them at different call points.

Note: The source code of this article is included in the CD.

					MS	.LST					
0000		1	ORG	00H	;locate reset routine at 00H	0042	22	36	RET		;delay routine eight times
0000	0143	2	AJMP S'		;jump to START of main program	0043		37	START:		
0003		3	ORG	03H	;locate interrupt 0	0043	756100	38	MOV		;store 1st code at 61H
0003	32	4	RETI		;returns from external interrupt 0	0046	7562B0		MOV	62H,#0B0I	
000B		5	ORG	0BH	;locate timer 0 interrupt	0049	756304		MOV	63H,#04H	
000B	32	6	RETI		;returns from timer 0 interrupt	004C	756424		MOV	64H,#24H	
0013		7	ORG	13H	;locate interrupt 1	004F	756532		MOV	65H,#32H	
0013	32	8	RETI		;returns from external interrupt 1	0052	756660		MOV	66H,#60H	
001B		9	ORG	1BH	;locate timer 1 interrupt	0055	756748		MOV	67H,#48H	
001B	32	10	RETI		;returns from timer 1 interrupt	0058	7568F2		MOV	68H,#0F2I	H ;store 8th code at 68H
0023		11	ORG	23H	;locate serial port interrupt	005B		46	LOOP:		
0023	32	12	RETI		returns from serial port interrupt;	005B	E590	47	MOV		; continuously read the inputs
0025		13	ORG	25H	;locate beginning of delay program	005D	B4FF02		CJNE	A,#0FFH,I	
0025		14	DELAYN			0060	015B	49	AJMP		;again jump to LOOP to read port-1
0025	7F00	15	MOV	R7,#00H	;delay of millisecond	0062			50	L1:	
0027		16	LOOPA:			0062	7C00	51	MOV R4	,#00H	;scan for any switch is pressed
0027	0F	17	INC R7	1.05	;increment R7 by one	0064	Do	52	L2:		
0028	EF	18	MOV	A,R7	;store R7 value to Accumulator (A)	0064	D3	53	SETB C		;loop L2 unless carry=0 detected
0029	B4FFF		CJNE	A,#0FFH	LOOPA	0065	33	54	RLC		rotate A with carry flag
002C	22	20	DELAY	RET		0066	0C 40FB	55	INC JC	R4 L2	;increment R4, each time loop L2 is run
002D 002D	7E00	$\frac{21}{22}$	MOV		the life second delays	0067		56			
002D 002F	7E00 7D08		MOV		;half second delay	0069	EC 2460	57	MOV		;R4 value for switch number
002F 0031	7D08	23 24	LOOPB:		;initialize R5	006A 006C	2460 F8	$\frac{58}{59}$	ADD MOV		;add A
0031	0E	$\frac{24}{25}$	INC R6		to call milliseconds delay;	006C 006D	го Еб	59 60	MOV		;move Address pointer to register R0
0031	0E 1125	25 26	ACALL	DELAYM		000D	E0	60	MOV		;address pointer R0 points to correct code stored
0032 0034	EE	$\frac{20}{27}$	MOV	A.R6	store R6 value to A	006E	F580	61	MOV		;code stored at A transferred to port-0
$0034 \\ 0035$	70FA	28	JNZ	LOOPB	;go to LOOPB unless R6=OO	0070	75A000	62	MOV		I ;initialize port-2 to start LEDs blinking
0035	E5A0	20 29	MOV	A,0A0H	store port-2 value to A	0070	112D	62 63	ACALL	DELAYHS	
0039	F4	29 30	CPL	A,0A011	complement A and output A to port 2 to	0075	7580FF		MOV	80H,#0FF	
0035 003A	F5A0	31	MOV	0A0H.A	;blinks all port LEDs	0075	75A0FF		MOV	0A0H,#0F	
003A 003C	7400	32	MOV	A,#00H	;initialize A	0078 007B	015B	66	AJMP		delay returns here
003C	1400 1D	33	DEC	R5	decrement R5	007D	010D	67	END		;end program
003E 003F	ED	33	MOV	A,R5	move R5 value to A	VERS	ION 1 21				ERRORS FOUND
0031	70EF	35	JNZ	LOOPB	; if A is not 0 then go to LOOPB	v 1110	1011 1.2K	1001			
0040	10151	00	9115	TOOLD	,11 11 15 1101 0 then go to 10001 D						


AUTOMATIC SCHOOL BELL

RAJ KUMAR MONDAL

onsider that a school has a total of eight periods with a lunch break after the fourth period. Each period is 45 minutes long, while the duration of the lunch break is 30 minutes.

To ring this automatic school bell to start the first period, the peon needs to momentarily press switch S1. Thereafter, the bell sounds every 45 minutes to indicate the end of consecutive periods, except immediately after the fourth period, when it sounds after 30 minutes to indicate that the lunch break is over. When the last period is over, LED2 glows to indicate that the bell circuit should now be switched off manually.

In case the peon has been late to start the school bell, the delay in minutes can be adjusted by advancing the time using switch S3. Each pushing of switch S3 advances the time by 4.5 minutes. If the

school is closed early, the peon can turn the bell circuit off by momentarily pressing switch S2.

The bell circuit contains timer IC NE555 (IC1), two CD4017 decade counters (IC2 and IC3) and AND gate CD4081 (IC4). Timer IC1 is wired as an astable multivibrator, whose clock output pulses are fed to IC2. IC2 increases the time periods of IC1 (4.5 and 3 minutes) by ten times to provide a clock pulse to IC3 every 45 minutes or after 30 minutes, respectively. When the class periods are going on, the outputs of IC3 switch on transistors T1 and T2 via diodes D4 through D12.

Resistors R4 and R5 connected in series to the emitter of npn transistor T2 decide the 4.5-minute time period of IC1. The output of IC1 is further connected to pin 14 of IC2 to provide a period with a duration of 45 minutes. Similarly, resistors R2 and R3 connected in series to the emitter of npn transistor T1 decide the 3-minute time period of IC1, which is further given to IC2 to provide the lunch-break duration of 30 minutes.

Initially, the circuit does not ground to perform its operation when 12V power supply is given to the circuit.

When switch S1 is pressed momentarily, a high enough voltage to fire siliconcontrolled resistor SCR1 appears at its gate. When SCR1 is fired, it provides ground path to operate the circuit after resetting both decade counters IC2 and IC3. At the same time, LED1 glows to indicate that school bell is now active.

When switch S2 is pressed momentarily, the anode of SCR1 is again grounded and the circuit stops operating. In this condition, both LED1 and LED2 don't glow.

When the eighth period is over, Q9 output of IC3 goes high. At this time, transistors T1 and T2 don't get any voltage through the outputs of IC2. As a result, the astable multivibrator (IC1) stops working.

The school bell sounds for around 8 seconds at the end of each period. One can increase/decrease the ringing time of the bell by adding/removing diodes connected in series across pins 6 and 7 of IC1.

The terminals of the 230V AC electric bell are connected to the normally-open (N/O) contact of relay RL1. The circuit works off a 12V regulated power supply. However, a battery source for back-up in case the power fails is also recommended.

AUTOMATIC WATER PUMP CONTROLLER

R. ARAVIND & V. PRADEEP KUMAR

Here ere's a circuit that automatically controls the water pump motor. The motor gets automatically switched on when water in the overhead tank (OHT) falls below the lower limit. Similarly, it gets switched off when the tank is filled up. Built around only one NAND gate IC (CD4011), the circuit is simple, compact and economical. It works off a 12V DC power supply and consumes very little power.

The circuit can be divided into two parts: controller circuit and indicator circuit.

Fig. 1 shows the controller circuit. Let us consider two reference probes 'A' and 'B' inside the tank, where 'A' is the lower-limit probe and 'B' is the upper-limit probe. The 12V DC power supply is given to probe C, which is the limit for minimum water always stored in the tank.

The lower limit 'A' is connected to the base of transistor T1 (BC547), the collector of which is connected to the 12V power supply and the emitter is connected to relay RL1. Relay RL1 is connected to pin 13 of NAND gate N3. Similarly, the upper-limit probe 'B' is connected to the base of transistor T2 (BC547), the collector of which is connected to the 12V power supply and the emitter is connected to pins 1 and 2 of NAND gate N1 and ground via resistor R3. The output pin 4 of NAND gate N2 is connected to pin 12 of NAND gate N3. The output of N3 is connected to input pin 6 of N2 and the base of transistor T3 via resistor R4. Relay RL2 connected to the emitter of transistor T3 is used to drive the motor.

If the tank is filled below probe A, transistors T1 and T2 do not conduct and the output of N3 goes high. This high output energises relay RL2 to drive the motor and it starts pumping water into the tank.

When the tank is filled above probe A but below probe B, water inside the tank provides base voltage to drive transistor T1 and relay RL1 energises to make pin 13 of gate N3 high. However, water inside the tank does not provide base voltage to transistor T2, so it does not conduct and the logic built around NAND gates N1 and N2 outputs low to pin 12 of gate N3. The net effect is that the output of N3 remains high and the motor continues pumping water into the tank.

When the tank is filled up to probe B level, water inside the tank still provides base voltage to transistor T1 and relay RL1 energises to make pin 13 of gate N3 high. At the same time, water inside the tank also provides base voltage to drive transistor T2 and the logic built around NAND gates N1 and N2 outputs high to pin 12 of gate N3. The net effect is that the output at pin 11 of N3 goes low and the motor stops pumping water into the tank.

Water-level Indication by LEDs

Level of water inside the tank	Glowing of LEDs
Full tank	LED1, LED2, LED3, LED4, LED5
¾ Tank	LED1, LED2, LED3, LED4
½ Tank	LED1, LED2, LED3
¼ Tank	LED1, LED2
Min. level	LED1

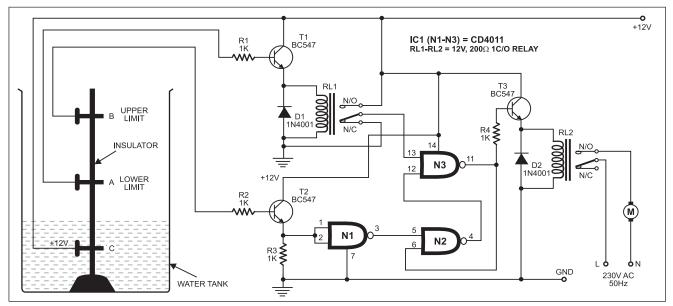


Fig. 1: Controller circuit

When water level falls below probe B but above probe A, water inside the tank still provides base voltage to transistor T1 and relay RL1 remains energised to make pin 13 of gate N3 high. However, transistor T2 doesn't conduct and the logic built around NAND gates N1 and N2 outputs high to pin 12 of N3. As a result, the output of N3 remains low and motor remains stopped.

When water level falls below probe A, both transistors T1 and T2 do not conduct. NAND gate N3 gives a high output to drive relay RL2 and the motor restarts pumping water into the tank.

Fig. 2 shows the indicator/ monitoring circuit. It consists of five LEDs, which glow to indicate the level of water in the overhead tank. Since 12V power supply is given to water at the base of the tank, transistors T3 through T7 get base voltage and conduct to light up the LEDs (LED5 down through LED1).

When water in the tank reaches the minimum at level C, transistor T7 conducts and LED1 glows. When water level

rises to one-fourth of the tank, transistor T6 conducts and LED1 and LED2 glow. When water level rises to half of the tank, transistor T5 conducts and LED1, LED2 and LED3 glow. When water level rises to three-fourth of the tank, transis-

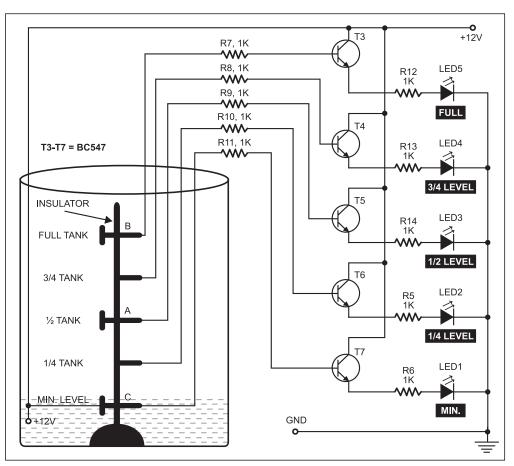


Fig. 2: Indicator/monitoring circuit

tor T4 conducts and LED1 through LED4 glow. When the tank is full, transistor T3 conducts and all the five LEDs glow. So, from glowing of LEDs, one can know water level in the tank (see the table). The LEDs can be mounted anywhere for easy monitoring.

Note. The user can adjust the level to which water must be filled in the tank by adjusting the heights of probes A and B. The stand and adjusting screws should be insulated to avoid shorting.

NOISE METER

D. MOHAN KUMAR

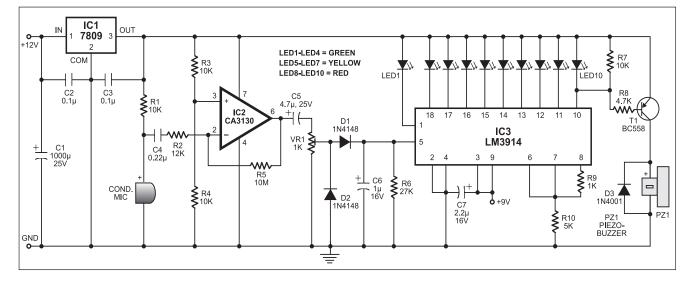
ormally, sound intensity up to 30 dB is pleasant. Above 80 dB, it becomes annoying. And if it goes beyond 100 dB, it may affect your psychomotor performance, detracting your attention and causing stress. Noise pollution may also affect your hearing ability.

Noise intensity level in households is around 47 dB. But hi-fi music systems and TV sets operated at high volumes add to this sound, posing a health hazard. Here's a simple circuit that senses and displays the noise intensity level in your room. It also gives a warning beep when noise crosses the safe level of 30 dB.

The circuit comprises a sound intensity sensor and a display unit. The regulator circuit built around regulator IC 7809 (IC1) provides regulated 9V power supply to the circuit.

The sound intensity sensor is built around a condenser microphone, op-

amp IC CA3130 (IC2) and associated components. Op-amp IC2 is configured as a high-gain inverting amplifier. The voltage supply to IC2 at its non-inverting pin 3 is divided to half by resistors R3 and R4, which is also used as the reference voltage. Resistor R1 determines the sensitivity of the condenser microphone.


The microphone picks up sound vibrations and converts them into the corresponding electric pulses, which are fed to the inverting input of IC2 (pin 2) via capacitor C4 and resistor R2. Capacitor C4 blocks any DC entering the op-amp, since it may affect the functioning of the op-amp. The output of IC2 is connected to the inverting input through resistor R5 (10 mega-ohms) for negative feedback. Since the input impedance of IC2 is very high, even a small current can activate the op-amp.

The output of IC2 is given to preset VR1 via capacitor C5, which is used to control the volume. Capacitor C5 blocks DC, allowing only AC to pass through preset VR1. The AC signals from the wiper reservoir capacitor for DC and resistor R6 provides the path for its discharge.

The display circuit is built around monolithic IC LM3914 (IC3), which senses the analogue voltage and drives ten LEDs to provide a logarithmic analogue display. Current through the LEDs is regulated by the internal resistors of IC3, eliminating the need for external resistors. The built-in low-bias input buffer of IC3 accepts signals down to ground potential and drives ten individual comparators inside IC3. The outputs of IC3 go low in a descending order from 18 to 10 as the input voltage increases. Pin 9 of IC3 is connected to 9V to get the dot-mode display. In the dot-mode display, there is a small amount of overlap between segments. This assures that at no time will all LEDs be 'off.'

When output pin 10 of IC3 goes low, pnp transistor T1 gets base bias (normally cut-off due to resistor R7) to sound the piezobuzzer (PZ1) connected to its collector.

The circuit can be constructed on any general-purpose PCB. Condenser microphone should be connected using a shield wire and enclosed in a tube to increase its sensitivity. For audiovisual indications, use a small DC piezobuzzer and transparent LEDs. Adjust

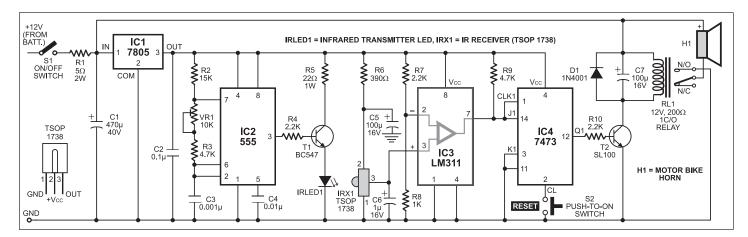
of VR1 are fed to a diode pump comprising diodes Dl and D2. The diode pump rectifies the AC and maintains it at the output level of IC2. Capacitor C6 acts as a Each LED connected to the output of IC3 represents the sound level of 3 dB, so when all the ten LEDs glow, it means the sound intensity is 30 dB.

preset VR1 until only the first LED (LED1) lights up. Keep the circuit near the audio equipment or TV set to monitor the audio level.

ANTI-THEFT ALARM FOR BIKES

PRAVEEN KUMAR M.P.

f anybody tries to steal your bike, this circuit turns on the horn of the bike to alert you of the impending theft.


Usually, a handle lock is used on the handle bar for the safety of bikes, with the front mudguard in a slanted position. When the handle lock is freed, the front mudguard can be aligned with the body of the bike.

This circuit consists of transmitter and receiver sections. The transmitter (IR LED1) is fitted on the back end of the front mudguard and the receiver sensor (IRX1) is fitted on the central portion of the crash guard of the bike such that IR rays from the transmitter directly fall on the sensor when the front mudguard comes in line with the body of the bike.

The transmitter section is built around timer 555 (IC2), which is wired as an astable multivibrator with a frequency of around 38 kHz. The output of IC2 is further amplified by transistor T1 and given to an infrared light-emitting diode (IR LED1), which continuously transmits the IR frequency.

The receiver section uses IR receiver module TSOP 1738 (IRX1), which is normally used in TV receivers. The receiver module senses the IR modulated frequency transmitted by the IR LED.

When no IR rays are incident on the sensor, its output is high. But the output of the IR sensor goes low when it senses the modulated IR signal. The output of the receiver module is given to a negativevoltage comparator built around IC LM311 (IC3). The input voltage at pin 2 of IC3 is

fixed by using the voltage-divider network comprising resistors R7 and R8.

When IR rays are not incident on the IR receiver module, the voltage at pin 3 of IC3 is greater than the voltage at pin 2. As a result, the output of comparator IC3 is low. But when the receiver senses IR rays from IR LED1, the voltage at pin 3 of IC3 is lower than the voltage at pin 2. As a result, the output of the comparator goes high.

The output of the comparator is given to a latch made up of JK flip-flop (IC4). The low-to-high going pulse from the comparator makes the output of IC4 high until it is reset. The output of IC4 is latched and used to energise relay RL1 via transistor T2. The relay is connected to the negative terminal of the mobike's horn, while the positive terminal of the horn is connected to the positive terminal of the battery via resistor R1. The energised relay drives the horn, which continues sounding until you press reset switch S2 momentarily.

At night, lock your bike using the handle lock and switch on the circuit using switch S1. Since the IR transmitter (IR LED1) and the receiver (IRX1) will not be in line of sight, IR rays from IR LED1 will not be incident on the sensor. When anyone tries to move the bike away, the IR transmitter and the IR receiver will come in line of sight and the IR rays from the IR transmitter will be incident on the receiver. This will make the output of the comparator (IC3) high. The pulse from the comparator will make the output of latch IC4 high and transistor T2 will conduct to sound the horn via relay RL1.

Note. The circuit excluding the transmitter and the receiver can be housed in a small metal box and kept inside the tool box of the bike.

Before you start your bike, make sure that the circuit is switched off using switch S1.

TIMER WITH MUSICAL ALARM

This low-cost timer can be used for introducing a delay of one minute to two hours. After the timing period is over, a musical song is heard.

The circuit is built around popular CMOS oscillator/divider CD4060 (IC1). It works off a 9V PP3 battery and its standby current drain is very low.

By adjusting preset VR1, the time delay can be adjusted. After time delay is over, output pin 3 of IC1 goes high and

FRONT VIEW

guration of melo-

dy generator IC UM66 ducts to provide positive power supply to melody generator IC UM66 (IC2) at its pin 2. Zener diode ZD1 reduces this power supply to 3.3V required for operation of IC2. The output of IC2 is fed to the loudspeaker (LS1) via driver transistor T1.

npn transistor T1 con-

PRADEEP G.

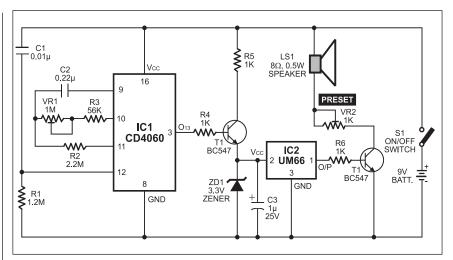


Fig. 2: The circuit of timer with musical alarm

Preset VR2 is used to control the volume of the loudspeaker.

The timer gets activated when power

is supplied by pressing switch S1. To switch off the alarm, you need to switch off the power supply.

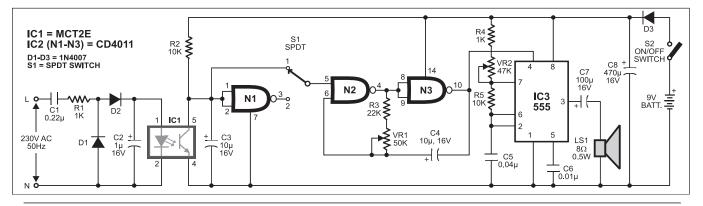
MAINS FAILURE/RESUMPTION ALARM

This mains indicator sounds an alarm whenever AC mains fails or re-sumes. It is very useful in industrial installations, cinema halls, hospitals, etc.

The mains detector circuit is built around capacitors C1 and C2, resistor R1, and diodes D1 and D2. It provides sufficient voltage for the glowing of internal LED of optocoupler MCT2E (IC1).

Initially SPDT switch S1 is at position 1. When mains fails, pin 5 of gate N2 goes high and the oscillator built around gates N2 and N3 of IC2 produces low-fre-

V. DAVID


quency oscillations at pin 10, which are further given to pin 4 of IC 555 (IC3). The oscillation frequency can be varied from 0.662 Hz to 1.855 kHz using preset VR1.

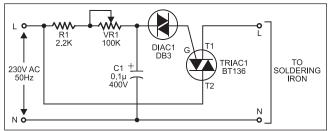
IC 555 (IC3) is wired as an audio tone generator. The tone of this audio oscillator can be varied from 472 Hz to 1.555 kHz using preset VR2. The low-frequency input activates IC3 to generate audio tones and loudspeaker LS1 connected to its output pin 3 sounds an alarm indicating mains failure.

To turn off the alarm, slide the pole of switch S1 to position 2. Now the circuit is ready for sensing the mains resumption.

When mains resumes, pin 5 of gate N2 goes high and the oscillator built around gates N2 and N3 of IC2 produces low-frequency oscillations at pin 10, which are given to reset pin 4 of IC3. As a result, loudspeaker LS1 again sounds to indicate that mains has resumed. To turn off the alarm, slide the pole of switch S1 back to position 1. Now the circuit is again ready for sensing the mains failure.

The circuit works off a 9V battery. It can be housed in a box and installed where you want to monitor the status of mains.

SOLDERING IRON TEMPERATURE CONTROLLER


P.V. VINOD KUMAR

Here is a simple circuit to control the temperature of a soldering iron. It is especially useful if the soldering iron is to be kept on for long since you can control the heat dissipation from the iron. When a soldering iron is switched on, the iron takes time to reach the solder's melting point. Simply connect this circuit to the soldering iron as shown in the figure and the iron reaches the solder's melting point quickly.

Triac BT136 is fired at differ-

ent phase angles to get temperatures varying from zero to maximum. A diac is used to control the triac firing in both directions. Potentiometer VR1 is used for setting the temperature of the soldering iron.

The circuit can be housed in a box with the potentiometer fixed on the side

such that its knob can be used from outside the box to adjust the soldering iron's temperature.

MULTIPURPOSE WHITE-LED LIGHT

N.S. HARISANKAR, VU3NSH

Standard fluorescent lamps and their smaller versions called compact fluo-rescent lamps (CFLs) radiate light in all directions (360°)

and tend to increase the room temperature. In emergency lights using these lamps, the battery lasts only a few hours due to the power loss during conversion of DC into AC. These limitations can be overcome by using ultrabright white LEDs.

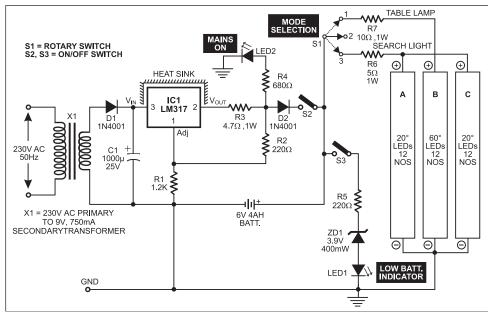

Here is a torch-cum-table lamp using white LEDs that can also be modified to act as an emergency-cum-bedroom light. Its main features are long and continuous operation, very low power consumption, selectable light angle, very long life and negligible heat radiation.

Fig. 1 shows the circuit of white LEDs-based torch-cum-table lamp. The circuit is very simple and uses a battery charger unit built around IC LM317 (IC1) shown in Fig. 1. The entire unit is powered by a 6V, 4Ah maintenance-free rechargeable battery.

The continuous lighting life is around

acts as a torch. When the pole of switch S1 is at position 2, both the table lamp and the torch modes remain off.

When mains is switched on, LED2

unit built around IC LM317 (IC1) Fig. 1: Cluster LED searchlight/table lamp

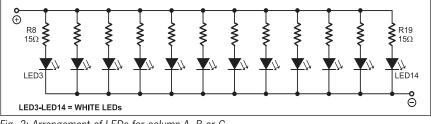


Fig. 2: Arrangement of LEDs for column A, B or C

and a combination of white LEDs. Resistor R3 (4.7-ohm, 2W) limits the current through the battery. The radiation angles selected for white LEDs are 60° and 20° . Three columns of LED clusters (A, B and C) are made on separate transparent acrylic sheets, with each sheet having a total of twelve LEDs affixed to it.

The left (A) and right (C) columns use 20° LEDs, while the middle column (B) uses 60° LEDs. All the twelve LEDs of each column are connected in series to separate 15-ohm current-equalisation resistors (R8 through R19) as shown in Fig. 2, and to current-limiter resistors R7 (10-ohm, 1W) and R6 (5-ohm, 1W) as 7 hours in torchlight mode and around 14 hours in table lamp mode, depending on the battery capacity and quality. For the torch mode, only the left and right LED columns are used. These LEDs beam light up to 6 metres. In table lamp (spread light) mode, only the middle column of LEDs is used.

You can select between the table lamp and torch modes by using rotary switch S1, which is a single-pole, 3-way switch. When the pole of switch S1 is set at position 1, the C column of 60° LEDs lights up and the system acts as a table lamp. When the pole of switch S1 is set at position 3, columns A and C light up and the system glows. To charge the battery, flip switch S2 to 'on' position. To check the status of the battery, flip switch S3 to 'on' position. This will give an indication of battery charge. If low-battery indicator LED1 turns off, the battery needs to be charged.

Fig. 3 shows the circuit of emergency lamp with brightness control, which is derived from Fig. 1 with slight modification in the combination of LEDs. Built around four multichip (MC) LEDs, it is very compact and simple, and can work in two modes, namely, bedroom lamp and emergency lamp.

In bedroom lamp mode, only one blue LED glows. This LED is mounted at the top in upside down position to avoid direct viewing of the blue light. The arrangement gives a pleasant, well-spread light.

In emergency lamp mode, 8mm, 80° bright-white multichip LEDs give 80° spread light, which is sufficient for indoor uses. Circular PCBs for multichip LEDs have four internal junctions each. Solder LED17 through LED20 in the first PCB, LED21 through LED24 in the second PCB, LED25 through LED28

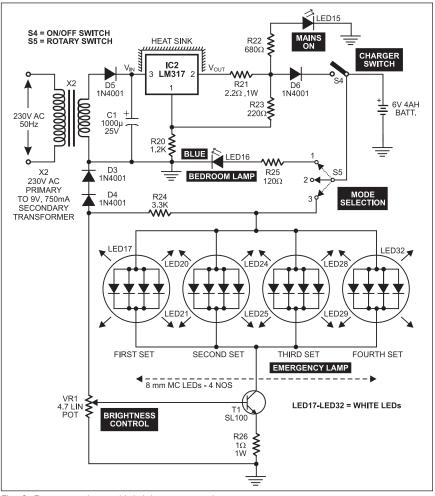


Fig. 3: Emergency lamp with brightness control

in the third PCB and LED29 through LED32 in the fourth PCB, with a spacing of 3 to 4 cm between two adjacent LEDs. Finally, house all the four circular PCBs in a compact cabinet along with the reflector such that light can spread out in the room.

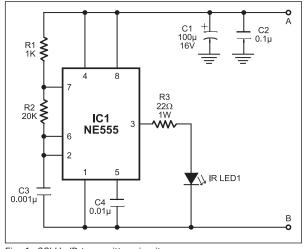
Each multichip LED gives a power of 32 candles. Therefore use of four 8mm multichip LEDs will give a total power of 128 candles.

In emergency lamp mode (selected through rotary switch S5), all the four multichip LEDs (including LED17 through LED32) glow. The DC power source is a 6V, 4Ah chargeable battery, with charging circuit built around popular IC LM317 (IC2). Resistor R21 (2.2-ohm, 1W) acts as the current limiter for the battery.

You can control the candle power (brightness) of LEDs as per your requirements. Transistor SL100 (T1) and its associated components form the candle controller (brightness controller). The base biasing voltage of the transistor is stabilised by resistor R24 and diodes N3 and N4 (1N4001). This constant voltage is given to the base of the transistor through a potentiometer VR1 (4.7k lin.). By adjusting the potentiometer, you can control the intensity of the multichip LEDs. No heat-sink is required for the transistor.

ELECTRONIC WATCHDOG

TAPAN KUMAR MAHARANA


Here's an electronic watchdog for your house that sounds to inform you that somebody is at the gate. The circuit comprises a transmitter unit and a receiver unit, which are mounted face to face on the opposite pillars of the gate such that the IR beam gets interrupted when someone is standing at the gate or passing through it.

The transmitter circuit (see Fig. 1) is built around timer NE555 (IC1), which is wired as an astable multivibrator producing a frequency of about 38 kHz. The infrared (IR) beam is transmitted through IR LED1.

The receiver circuit is shown in Fig. 2. It comprises IR sensor TSOP1738 (IR RX1), npn transistor BC548 (T1), timer

NE555 (IC2) and some resistors and capacitors. IC2 is wired as a monostable multivibrator with a time period of around 30 seconds. The melody generator section is built around melody generator IC UM66 (IC3), transistor T2 and loudspeaker LS1. Fig. 3 shows pin configurations of IR sensor TSOP1738 and melody generator IC UM66.

The power supply for the transmitter is derived from the receiver circuit by connecting its points A

by connecting its points A $\,$ Fig. 1: 38kHz IR transmitter circuit $\,$

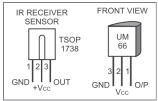
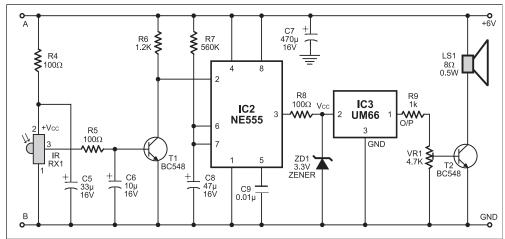


Fig. 3: Pin configurations of TSOP1738 and UM66

and B to the respective points of the receiver circuit. The receiver is powered by regulated 6V DC. For the purpose, you can use a 6V battery.

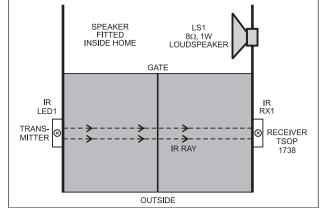

The transmitter and receiver units are aligned such that the IR beam falls directly Fig. 2: Receiver circuit

on the IR sensor. As long as IR beam falls on the sensor, its output remains low, transistor T1 does not conduct and trigger pin 2 of IC2 remains high.

When anyone interrupts the IR beam falling on the sensor, its output goes high to drive transistor T1 into conduction and pin 2 of IC2 goes low momentarily. As a result, IC2 gets triggered and its pin 3 goes high to supply 3.3V to melody generator IC3 at its pin 2, which produces a sweet melody through the speaker fitted inside the house. Output pin 3 of IC2 remains high for around 30 seconds.

Fig. 4 shows mounting arrangement for both the transmitter and receiver units on the gate pillars. To achieve a high directivity of the IR beam towards the sensor, use a reflector behind the IR LED.

After both the units have been built. connect 6V power supply to the receiver



circuit. You should hear a continuous melody from the speaker. Now connect 6V power to the transmitter also and orient IR LED1 towards IR receiver. The melody should stop after about 30 seconds. Now the transmitter and the receiver units are ready for use.

When somebody enters through the door, the IR beam is

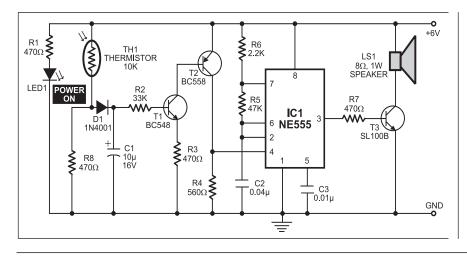
alarm sounds for 30 seconds. The alarm keeps sounding as long

as one stands between the transmitter and receiver units. Using preset VR1, you can

interrupted and the Fig. 4: Mounting arrangement for transmitter and receiver units

set the volume of the loudspeaker.

This circuit can also be used as a doorbell or burglar alarm.


FIRE ALARM USING THERMISTOR

PRINCE PHILLIPS

n this fire alarm circuit, a thermistor works as the heat sensor. When temperature increases, its resistance decreases, and vice versa. At normal temperature, the resistance of the thermistor (TH1) is approximately 10 kilo-ohms, which reduces to a few ohms as the temperature increases beyond 100°C. The circuit uses readily available components and can be easily constructed on any general-purpose PCB.

Timer IC NE555 (IC1) is wired as an astable multivibrator oscillating in audio frequency band. Switching transistors T1 and T2 drive multivibrator NE555 (IC1). The output of IC1 is connected to npn transistor T3, which drives the loudspeaker (LS1) to generate sound. The frequency of IC1 depends on the values of resistors R5 and R6 and capacitor C2.

When thermistor TH1 becomes hot, it provides a low-resistance path to extend positive voltage to the base of transistor T1 via diode D1 and resistor R2. Capacitor C1 charges up to the positive voltage and increases the 'on' time of alarm. The higher the value of capacitor C1, the higher the forward voltage applied to the base of transistor

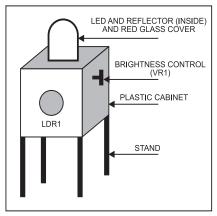
T1 (BC548). Since the collector of transistor T1 is connected to the base of transistor T2, transistor T2 provides positive voltage to reset pin 4 of IC1 (NE555). Resistor R4 is used such that IC1 remains inactive in the absence of positive voltage. Diode D1 stops discharging of capacitor C1 when the thermistor connected to the positive supply cools down and provides a high-resistance (10-kilo-ohm) path. It also stops the conduction of T1. To prevent the thermistor from melting, wrap it up in mica tape.

The circuit works off a 6V-12V regulated power supply. LED1 is used to indicate that power to the circuit is switched on.

TWILIGHT LAMP BLINKER

T.K. HAREENDRAN

uring sunset or sunrise, the ambient light is not adequate to lead you through the open doorway or make your way around obstructions. To avoid any mishap, here is a twilight lamp blinker that you can place near obstructions.


Fig. 1 shows the circuit of the twilight lamp blinker. For powering the circuit, the mains input (230V AC) is down-converted by resistors R1 and R2, capacitor C1 and diodes D1 and D2 into a DC voltage that is low enough to safely charge the back-up battery pack. Resistor R2 across capacitor C1 functions as a bleeder resistor. Zener diode ZD2 protects against over-voltage.

Miniature Ni-Cd battery packs for cordless telephones are easily available

at reasonable rates. Use such a battery pack with 4.8V, 500mAh rating for efficient and long-time back-up. The pole of switch S1 should be in position 2 if you use a battery. If you are not interested in the back-up facility, flip switch S1 to position 1.

The rest of the circuit includes a lightdetector resistor (LDR1), IC CD4093 (IC1) and a preset (VR1) for brightness control. LDR1 is used as a sensor that has a low resistance during daytime and a high resistance at night.

When light falls on the LDR, its low resistance provides low level at the inputs of NAND gate N1. The high input from N1 makes the output of N2 low and the relaxation oscillator (built around NAND gates N3 and N4 of IC1, capacitor C3 and

resistor R3) does not oscillate. As a result, transistor T1 does not conduct and LED1

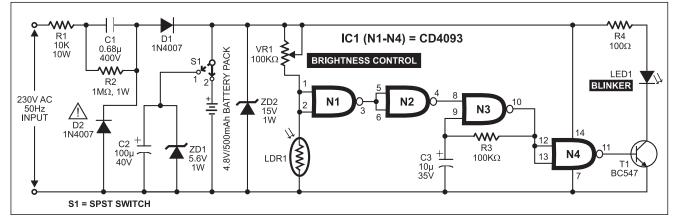


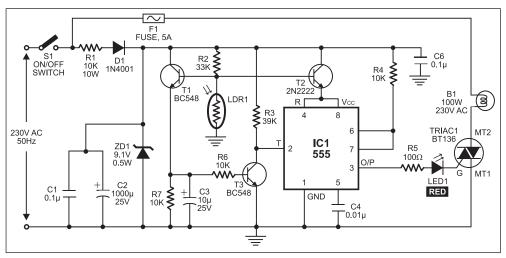
Fig. 1: Circuit diagram of twilight lamp blinker

does not blink.

On the other hand, in darkness, the high resistance of LDR1 provides a high level at the input pins of NAND gate N1. The low output from N1 makes the output of N2 high and the relaxation oscillator oscillates. As a result, transistor T1 conducts and LED1 blinks. Transistor T1 is the LED driver. Resistor R4 limits the current flowing through LED1 and hence its brightness. You may connect one or two additional LEDs in series with LED1 to get more light. The low brightness of LED1 will extend the battery back-up time. to the high-voltage AC supply, enclose it in a plastic case (shown in Fig. 2) to avoid any fatal electric shock. On the front side of the cabinet, leave a hole for LDR1 so that light can easily fall on it. Fix preset VR1 on the other side. You can place the gadget anywhere you want, provided ambient light falls directly on the LDR.

Since the circuit is directly connected

ELECTRONIC STREET LIGHT SWITCH


Here's a simple and lowcost street light switch. This switch automati-cally turns on the light at sunset and turns it off at sunrise. The automatic function saves electricity besides manpower.

Broadly, the circuit can be divided into power supply and switching sections.

Pressing switch S1 connects mains to power the circuit. Mains is stepped down to 9.1V DC by resistor R1, diode D1 and zener diode ZD1. The output across ZD1 is filtered by capacitors C1 and C2. The

output voltage can be increased up to 18V or decreased to 5V by changing the value of zener diode ZD1.

The switching circuit is built around light-dependent resistor LDR1, transistors T1 through T3 and timer IC1. The resistance of LDR1 remains low in daytime and high at night. Timer IC1 is designed to work as an inverter, so a low input at its pin 2 provides a high output at pin 3, and vice versa. The inverter is PRINCE PHILIPS

used to activate triac 1 and turn street bulb B1 on.

During daytime, light falls on LDR1 and transistors T1 and T2 remain cutoff to make pins 4 and 8 of IC1 low. Since transistor T3 is also cut-off, IC1 is not triggered. As a result, output pin 3 of IC1 (connected to the gate of triac 1 via resistor R5 and red LED1) remains low and the street bulb does not glow. At night, no light falls on LDR1 and transistors T1 and T2 conduct to make pins 4 and 8 of IC1 high. Due to the conduction of transistor T3, trigger pin 2 of IC1 remains low. The high output of IC2 at its pin 3 turns the street bulb 'on.'

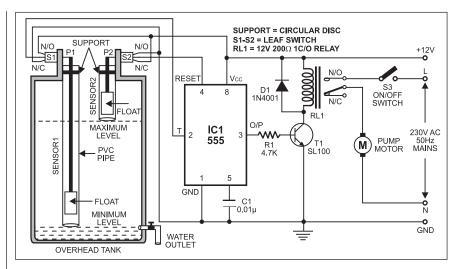
Assemble the circuit, except LDR1, on any general-purpose PCB. Use long wires for LDR1 connections so that it can be mounted at a place where sufficient light falls on it.

WATER-LEVEL CONTROLLER

K.P. VISWANATHAN

ere is a simple, automatic waterlevel controller for overhead tanks that switches on/off the pump motor when water in the tank goes be-

low/above the minimum/maximum level. The water level is sensed by two floats to operate the switches for controlling the pump motor. Each sensors float is suspended from above using an aluminium rod. This arrangement is encased in a PVC pipe and fixed vertically on the inside wall of the water tank. Such sensors are more reliable than induction-type sensors. Sensor 1 senses the minimum water level, while sensor 2 senses the maximum water level (see the figure).


Leaf switches S1 and S2 (used in tape recorders) are fixed at the top of the sensor units such that when the floats are lifted, the attached 5mm dia. (approx.) aluminium rods push the moving contacts (P1 and P2) of leaf switches S1 and S2 from normally closed (N/C) position to normally open (N/O) position. Similarly, when the water level goes down, the moving contacts revert back to their original positions.

Normally, N/C contact of switch S1 is connected to ground and N/C contact of switch S2 is connected to 12V power supply. IC 555 is wired such that when its trigger pin 2 is grounded it gets triggered, and when reset pin 4 is grounded it gets reset. Threshold pin 6 and discharge pin 7 are not used in the circuit.

When water in the tank goes below the minimum level, moving contacts (P1 and P2) of both leaf switches will be in N/C position. That means trigger pin 2 and reset pin 4 of IC1 are connected to ground and 12V, respectively. This triggers IC1 and its output goes high to energise relay RL1 through driver transistor SL100 (T1). The pump motor is switched on and it starts pumping water into the overhead tank if switch S3 is 'on.'

As the water level in the tank rises, the float of sensor 1 goes up. This shifts the moving contact of switch S1 to N/O position and trigger pin 2 of IC1 gets connected to 12V. This doesn't have any impact on IC1 and its output remains high to keep the pump motor running.

As the water level rises further to

reach the maximum level, the float of sensor 2 pushes the moving contact of switch S2 to N/O position and it gets connected to ground. Now IC1 is reset and its output goes low to switch the pump off.

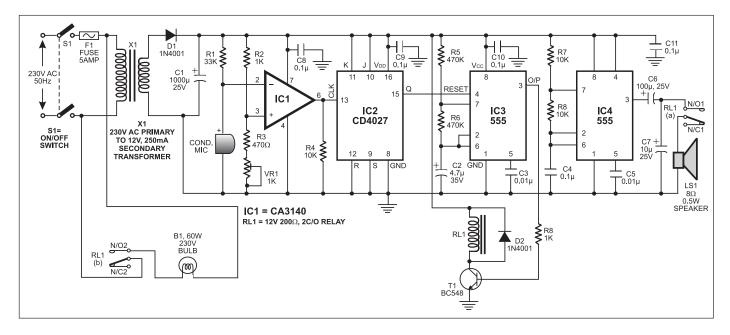
As water is consumed, its level in the overhead tank goes down. Accordingly, the float of sensor 2 also goes down. This causes the moving contact of switch S2 to shift back to NC position and reset pin 4 of IC1 is again connected to 12V. But IC1 doesn't get triggered because its trigger pin 2 is still clamped to 12V by switch S1. So the pump remains switched off.

When water level further goes down to reach the minimum level, the moving contact of switch S1 shifts back to N/C position to connect trigger pin 2 of IC1 to ground. This triggers IC1 and the pump is switched on.

The float sensor units can be assembled at home. Both the units are identical, except that their length is different. The depth of the water tank from top to the outlet water pipe can be taken as the length of the minimum-level sensing unit. The depth of the water tank from top to the level you want the tank to be filled up to is taken as the length of the maximumlevel sensing unit. The leaf switches are fixed at the top of the tank as shown in the figure.

Each pipe is closed at both the ends by using two caps. A 5mm dia. hole is drilled at the centre of the top cap so that the aluminium rod can pass through it easily to select the contact of leaf switches. Similarly, a hole is to be drilled at the bottom cap of the pipe so that water can enter the pipe to lift the float.

When water reaches the maximum level, the floats should not go up more than the required distance for pushing the moving contact of the leaf switch to N/O position. Otherwise, the pressure on the float may break the leaf switch itself. The length of the aluminium rod is to be selected accordingly. It should be affixed on the metal/thermocole float using some glue (such as Araldite).


SOUND-OPERATED INTRUDER ALARM

When this burglar alarm detects any sound, such as that created by opening of a door or inserting a key into the lock, it starts flashing a light as well as sounding an intermittent audio alarm to alert you of an intruder. Both the light and the alarm are automatically

RAJ K. GORKHALI

turned off by the next sound pulse. 230V AC mains is stepped down by

transformer X1, rectified by diode D1 and filtered by capacitor C1 to give 12V DC. The voltage at the non-inverting input (pin 3) of op-amp CA3140 (IC1) is treated as the reference voltage and it can be set using preset VR1. The voltage at the inverting input (pin 2) is the same as that across the condenser microphone. The condenser microphone should be carefully set for a high sensitivity of the sound. A high reference value means a subtle sound is enough to change the output of IC1 at pin

6. Fix the reference voltage such that the output remains unchanged during any false triggering.

In the absence of any sound, the voltage at input pin 2 of IC1 is almost equal to the full DC voltage and therefore the output of IC1 remains low. Since IC CD4027 is wired in toggle mode, its output pin 15 is also low. This makes reset pin 4 of IC3 low to reset the astable multivibrator built around timer 555 (IC3). As a result, transistor T1 is cut-off and relay RL1 remains de-energised. In de-energised state, both the N/O contacts of relay RL1, i.e. RL1(a) and RL1(b), remain open. RL1(a) contacts keep the lamp turned off, whereas RL(b) contact disconnects the output of the astable multivibrator built around IC 555 (IC4) to disable the speaker.

In the case of any noise, a current flows through the microphone and the voltage at pin 2 reduces to make the output of op-amp IC1 high. IC2 gets triggered by the pulse available at its pin 13 and its output at pin 15 goes high to enable astable multivibrator IC3. The output of IC3 goes high for three seconds and then goes low for 1.5 seconds. This repeats until pin 15 of IC2 remains high. The high output of IC3 energises the relay via driver transistor T1, while the low output de-energies the relay. When relay RL1 is energised, relay contact RL1(a) passes on the AC power to bulb B1 and it lights up. At the same time, relay contact RL1(b) allows the output of astable multivibrator IC4 to the speaker and an audio tone is generated. The frequency of this audio tone is approximately 480 Hz. Both the flashing of the bulb and the audio tone continue as long as the output of flip-flop IC2 remains high.

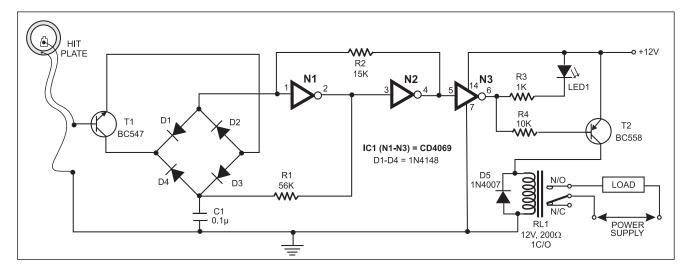
Now if the circuit detects any further sound, the output of flip-flop IC2 goes low. This makes reset pin 4 of astable multivibrator IC3 low and IC3 stops oscillating. The low output of IC3 de-energises the relay to turn the bulb and the tone off.

HIT SWITCH

T.A. BABU

This versatile hit switch is the electronic equivalent of a conventional switch. It can be used to control the switching of a variety of electronic devices.

The circuit of the hit switch uses a piezoelectric diaphragm (piezobuzzer) as the hit sensor. A piezoelectric material develops electric polarisation when strained by an applied stress. The hit sensor makes use of this property.


When you hit or knock the piezo element (hit plate) with your fingertip,

a small voltage developed by the piezo element is amplified by transistor BC547 (T1). The combination of transistor T1 and the bridge rectifier comprising diodes D1 through D4 acts as a voltage-control switch. The inverter gates of IC CD4069 (IC1) together with associated components form a bistable switch.

IC CD4069 is a CMOS hex inverter. Out of the six available inverter gates, only three are used here. IC1 operates at any voltage between 3V and 15V and offers a high immunity against noise. The recommended operating temperature range for this IC is -55°C to 125°C. This device is intended for all general-purpose inverter applications.

Initially, the input of gate N1 is low, while the input of gate N2 is high. Triggering the voltage-control switch by hitting the sensor pulls the input of gate N1 to high level and causes the bistable to toggle. The capacitor gets charged via resistor R1 and the circuit changes its state. This latch continues until the bistable switch gets the next triggering input.

Every time the hit plate receives a

hit, the voltage-control switch triggers the bistable circuit. That means every subsequent hit at the sensor will toggle the state of the switch. The red LED (LED1) connected at the output of gate N3 indicates 'on'/off' position of the switch.

Relay RL1 is activated by the hit switch to control the connected load.

The circuit works off 12V DC. It can be constructed on any general-purpose PCB. For the desired results, proper connections and installation of the hit sensor are necessary. Remove the cover of the piezobuzzer and connect its two leads to the circuit. Mount the plate such that it receives the hit properly. The piezoelectric material on the plate can easily get damaged, so hit the switch gently.

CHANTING PLAYER

K.N. GHOSH

hanting combines singing and music with mantras. The sweetness of chanting stills the mind, dissolves worries and opens the heart. Chanting forms an integral part of the practice schedule at siddha yoga retreats, centres and ashrams. Here are a few electronic chanting players for some popular mantras and artis.

At the heart of these circuits is a pre-

programmed read-only memory (ROM) chip bonded on a hylam board. (The ROM chip is a complementary metal-oxide semiconductor (CMOS), large-scale integrated (LSI) chip.) Known as chip-on-board (COB), these boards are available in different sizes, under a blob of epoxy, with chips programmed with single or multiple mantras/artis such as gayatri mantra, ganapati mantra, krishna mantra, om namah shivaye, shri

T h e

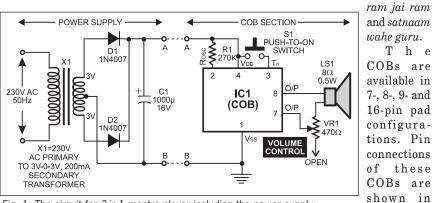


Fig. 1: The circuit for 3-in-1 mantra player including the power supply

Fig. 7, respectively. Some manufacturers make these COBs with different pad configurations, so their specifications should be strictly followed. Besides a preprogrammed data ROM,

Fig. 6, Figs 1, 2 and 4, Figs 3 and 5, and

the COBs contain an inbuilt oscillator, counter, shift register, adaptive differential pulse-code modulation (ADPCM) synthesiser and digital-to-analogue converter (DAC).

The timing pulses generated by the

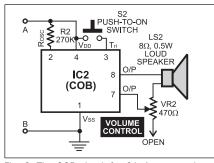


Fig. 2: The COB circuit for 2-in-1 mantra player

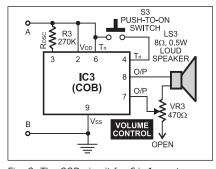


Fig. 3: The COB circuit for 6-in-1 mantra player

oscillator regulate the pace of the mantra and other activity inside the chip. Its frequency is decided by an external resistor (Rosc) connected between its two input pins. The controller controls all the activities inside the chip. It sends appropriate signals to the counter and the shift register to read the data in the ROM. The output of the ROM is fed back to the controller, which directs it to the ADPCM synthesiser. The synthesiser's output is sent to the DAC, which converts it into audio. The audio output from the DAC is reproduced by the loudspeaker. The potentiometer connected to the input of the loudspeaker acts as a volume controller.

The COB works off 3V DC and is capable of driving the loudspeaker directly.

Fig. 1 can be divided into power supply and COB sections. The same power supply section is to be used for the COB circuits shown in Figs 2 through 5 as well. The 3V power supply for the COB is derived by using a 3V-0-3V center-tapped transformer (X1). The secondary output of the transformer is applied to a full-wave rectifier comprising diodes D1 and D2. The output of the full-wave rectifier is filtered by capacitor C1 to provide 3V DC to the COB.

For 3-in-1 *mantra* player, connect A and B terminals of the power supply

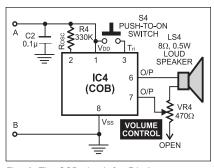


Fig. 4: The COB circuit for 5-in-1 mantra player

section to the corresponding points of the COB section as shown in Fig. 1. Then connect 230V AC mains to the primary of transformer X1. Now the circuit is ready to play.

The desired *mantra* can be selected by applying positive supply to trigger pin 3 of IC1 by pressing push-to-on switch S1 momentarily. When you press switch S1 for the first time, "wahe guru" is played. When you press switch S1 second time, "satnam wahe guru" is played. When you press switch S1 third time, "satnam karta purush" is played. Using preset VR1, the volume of the sound can be controlled.

For 2-in-1 mantra player, connect the power supply section of Fig. 1 to the COB section shown in Fig. 2. The desired mantra can be selected by applying positive supply to trigger pin 3 of IC2 by pressing push-to-on switch S2 momentarily. When you press switch S2 for the first time, "jai ganesh jai ganesh deva" is played. When you press switch S2 second time, "aarti kijje hanuman lala ki" is played.

For 6-in-1 mantra player, connect the power supply section of Fig. 1 to the COB section shown in Fig. 3. The desired mantra can be selected by applying positive supply to trigger pin 4 of IC3 by pressing push-to-on switch S3 momentarily. When you press switch 3 for the first time,

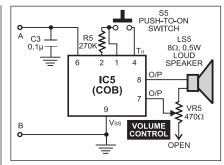


Fig. 5: The COB circuit for another 2-in-1 mantra player

the circuit starts playing "om bhurbhua swaha" When you press switch S3 second time, "om namah shivaye" is played. When you press switch S3 third time, "jai ganesh, jai ganesh deva" is played. When you press switch S3 fourth time, "govind bolo hari gopal bolo" is played. When you press switch S3 fifth time, "shriman narayan narayan" is played. When you press switch S3 sixth time, "om krishna yadhamah" is played.

For 5-in-1 *mantra* player, connect the power supply section of Fig. 1 to the COB section shown in Fig. 4. When you press switch S4 for the first time, "om bhurbhua swaha" is played. On consequent pressing of switch S4, "om namo shivaye," "jai ganesh, jai ganesh deva" "jai siya ram" and "govind bolo hari gopal bolo" are played in that order.

For another 2-in-1 *mantra* player, connect the power supply section of Fig. 1 to the COB section shown in Fig. 5. When you press switch S5 for the first time, "om bhurbhua swaha" is played. When switch S5 is pressed second time, "om namah shivaye" is played.

The circuit for playing a single *mantra* with loud sound is shown in Fig. 6. The circuit comprises power supply, COB (shown within dotted lines) and low-power audio amplifier sections. Low-power audio

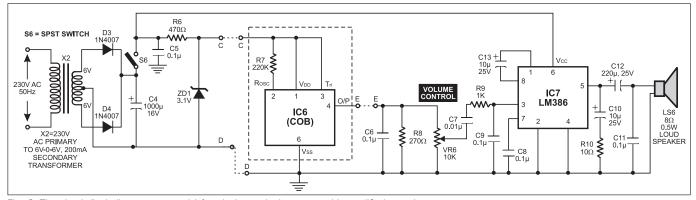


Fig. 6: The circuit (including power supply) for playing a single mantra with amplified sound

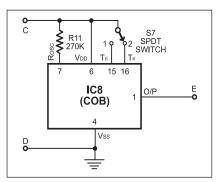


Fig. 7: The COB circuit for 2-mantra player

amplifier IC LM386 (IC6) is used here to get louder sound.

The power supply section uses a 6V-0-6V centre-tapped transformer (X2) instead of the 3V-0-3V centre-tapped transformer. The secondary output of the transformer is rectified by a full-wave rectifier comprising diodes D3 and D4, and filtered by capacitor C4 to provide 6V DC to the power amplifier (IC6). Zener diode ZD1 in series with resistor R6 reduces the supply voltage to 3V for the COB section.

Connect all the three sections together by connecting their identical terminals. Then connect 230V AC mains to the primary of transformer X2. Now the circuit is ready to work. Simply press switch S6 to provide the power supply to IC6 and IC7 and "om namah shivaye" start playing loudly. Using preset VR6, you can control the volume of the sound.

For a 2-mantra player with loud sound, disconnect the COB circuit shown within dotted lines in Fig. 6 and replace it with the COB circuit shown in Fig. 7. The desired mantra can be selected by applying positive supply to trigger pin 15 or 16 of IC8 by changing the position of switch S7. Note that switch S6 should be kept pressed.

When switch S7 is in position 1, "shri krishanah sharnam namah" is played. The mantra repeats continuously. To stop it, either release switch S6 or shift switch S7 to position 2. If you choose to shift switch S7, "shri krishana" stops playing but "hari krishana, hari krishana" starts playing. The mantra repeats continuously. To stop it, either release switch S6 or shift switch S7 to position 1.

For ease of construction, assemble a small printed circuit board (PCB) for the amplifier and power supply circuits. Various types of plastic enclosures for electronic chanting players are available in the market. Use a suitable enclosure for this player. Take care while handling and soldering the COBs as the CMOS chips can get damaged due to static charge.

Top 20 Projects (Out of 89)

- Lift Overload Preventor
- A Bi-directional Visitor Counter
- Programmer for 89C51/89C52/89C2051 Microcontroller
- Laser-based Communication Link
- Remote Controlled Sophisticated Electronic Code Lock
- PIC16F84-based Coded Device Switching System
- Voice Recording and Playback Using APR9600 Chip
- Microprocessor-based Home Security System

- Ultrasonic Lamp Brightness Controller
- Moving Message Over Dot-matrix Display
- LED-Based Message Display
- Programmable Timer for Appliances
- Antibag Snatching Alarm
- Fuse cum Power Failure Indicator
- Doorbell-controlled Porchlight
- Highway Alert Signal Lamp
- Watchman Watcher
- PC-based DC Motor Speed Controller
- Microcontroller-based Monitoring System
- Electronic Watchdog

EFY Enterprises Pvt Ltd D-87/1, Okhla Industrial Area, Phase 1, New Delhi 110 020; Ph: +91-11-26810601-03 Fax: +91-11-26817563; E-mail: info@efyindia.com; Website: www.efyindia.com